洛谷P1563玩具谜题(模拟)的不同细节处理

题目描述

小南有一套可爱的玩具小人, 它们各有不同的职业。

有一天, 这些玩具小人把小南的眼镜藏了起来。 小南发现玩具小人们围成了一个圈,它们有的面朝圈内,有的面朝圈外。如下图:

这时 singer 告诉小南一个谜題: “眼镜藏在我左数第 33 个玩具小人的右数第 11 个玩具小人的左数第 22 个玩具小人那里。 ”

小南发现, 这个谜题中玩具小人的朝向非常关键, 因为朝内和朝外的玩具小人的左右方向是相反的: 面朝圈内的玩具小人, 它的左边是顺时针方向, 右边是逆时针方向; 而面向圈外的玩具小人, 它的左边是逆时针方向, 右边是顺时针方向。

小南一边艰难地辨认着玩具小人, 一边数着:

singer 朝内, 左数第 33 个是 archer。

archer 朝外,右数第 11 个是 thinker 。

thinker 朝外, 左数第 22 个是 writer。

所以眼镜藏在 writer 这里!

虽然成功找回了眼镜, 但小南并没有放心。 如果下次有更多的玩具小人藏他的眼镜, 或是谜题的长度更长, 他可能就无法找到眼镜了。所以小南希望你写程序帮他解决类似的谜题。 这样的谜題具体可以描述为:

有 n 个玩具小人围成一圈, 已知它们的职业和朝向。现在第 11 个玩具小人告诉小南一个包含 m 条指令的谜題, 其中第 z 条指令形如“左数/右数第 s,个玩具小人”。 你需要输出依次数完这些指令后,到达的玩具小人的职业。

输入格式

输入的第一行包含两个正整数 n , m ,表示玩具小人的个数和指令的条数。

接下来 n 行,每行包含一个整数和一个字符串,以逆时针为顺序给出每个玩具小人的朝向和职业。其中 00 表示朝向圈内,11 表示朝向圈外。 保证不会出现其他的数。字符串长度不超过 1010 且仅由英文字母构成,字符串不为空,并且字符串两两不同。整数和字符串之间用一个空格隔开。

接下来 m 行,其中第 i 行包含两个整数 ai ​, si​ ,表示第 i 条指令。若 ai ​= 0,表示向左数 si​ 个人;若 ai ​= 1,表示向右数 si​ 个人。 保证 ai​ 不会出现其他的数,1 ≤ si​ < n。

输出格式

输出一个字符串,表示从第一个读入的小人开始,依次数完 m 条指令后到达的小人的职业。

输入输出样例

输入 #1

7 3
0 singer
0 reader
0 mengbier 
1 thinker
1 archer
0 writer
1 mogician 
0 3
1 1
0 2

输出 #1

writer

输入 #2

10 10
1 C
0 r
0 P
1 d
1 e
1 m
1 t
1 y
1 u
0 V
1 7
1 1
1 4
0 5
0 3
0 1
1 6
1 2
0 8
0 4

输出 #2

y

说明/提示

【样例1说明】

这组数据就是【题目描述】 中提到的例子。

【子任务】

子任务会给出部分测试数据的特点。 如果你在解决题目中遇到了困难, 可以尝试只解决一部分测试数据。

每个测试点的数据规模及特点如下表:

其中一些简写的列意义如下:

  • 全朝内: 若为“√”, 表示该测试点保证所有的玩具小人都朝向圈内;

  • 全左数:若为“√”,表示该测试点保证所有的指令都向左数,即对任意的 1 ≤ z ≤ m,ai​ = 0;

  • s = 1:若为“√”,表示该测试点保证所有的指令都只数 11 个,即对任意的 1 ≤ z ≤ m, si ​= 1;

职业长度为 11:若为“√”,表示该测试点保证所有玩具小人的职业一定是一个长度为11的字符串。


题解代码如下:

#include <iostream>
using namespace std;
int n, m;

int main() {
    cin >> n >> m;//n为人数,m为指令数
    int direction[n], lorr[m], num[m], ans = 0;
    char name[n][20];    //direction表示朝里朝外的方向(0内1外),lorr表示往左还是往右(0左1右),num表示数的人数
    for (int i = 0; i < n; i++)
        cin >> direction[i] >> name[i];     //读入
    for (int i = 0; i < m; i++)
        cin >> lorr[i] >> num[i];           //读入
    for (int i = 0; i < m; i++) {           //逐个模拟即可
        if (direction[ans] == 0) {
            if (lorr[i] == 0) {
                ans -= num[i];
                if (ans < 0)
                    ans += n;
            }
            else {
                ans += num[i];
                if (ans > n-1)
                    ans -= n;
            }
        }
        else {
            if (lorr[i] == 0) {
                ans += num[i];
                if (ans > n-1)
                    ans -= n;
            }
            else {
                ans -= num[i];
                if (ans < 0)
                    ans += n;
            }
        }
    }
    cout << name[ans];
    return 0;
}

本题也是一道较为经典的模拟题。我们需要在代码中从第一个职业开始,用循环逐步对向左向右,向左还是向右多少步来进行模拟,最后得出结果并输出。

思维难度不大,问题在于如何去实现这种模拟。以上代码运用了三个一维数组和一个二维数组存放每个职业的状态(direction表示朝里朝外的方向、lorr表示向左数还是向右数、num表示数的个数、name作为二维字符数组用来存放职业名称),并定义ans在程序中的循环里根据所指的职业不同进行实时更新,最后输出ans对应在name数组里的职业名称即可。

同时还要注意ans“越界”的问题,就是有可能ans在加减过程中,其值可能大于n-1或小于0,此时就要注意到各个职业围成的是一个圈,因此进行相应的n加减即可得到最终的ans。


以上代码是一种用一二维数组进行职业状态模拟的方法,以下代码提供了另一种模拟的思路,比用数组模拟更加直观可读。

另解代码如下:

#include <iostream>
#include <string>
using namespace std;
const int MAXN = 1e6 + 5;   //aeb表示a*10^b
struct node {               //用结构体来储存每个职业的状态,head表示朝向,name为人名
    int head;
    string name;
}a[MAXN];           
int n, m, x, y;

int main() {
    cin >> n >> m;
    for (int i = 0; i < n; i++) 
        cin >> a[i].head >> a[i].name;
    int now = 0;
    for (int i = 1; i <= m; i++) {
        cin >> x >> y;                          //x表示向左数还是向右数,y表示数的步数
        if (a[now].head == 0 && x == 0)
            now = (now + n - y) % n;            //用对n取余的方法也可以得到最终的位置
        else if (a[now].head == 0 && x == 1)
            now = (now + y) % n;
        else if (a[now].head == 1 && x == 0)
            now = (now + y) % n;
        else if (a[now].head == 1 && x == 1)
            now = (now + n - y) % n;            //当now减少时,采取+n再对n取余的做法,当now增加时,直接对n取余就能得到答案
    }
    cout << a[now].name << endl;                //输出即为答案
    return 0;
}

 此段代码并没有采用第一段代码的数组来模拟每个职业的状态,而是定义了一个结构体数组来对每一个职业进行描述,这样可以显得更为直观可读。

另外,此段代码对于最后答案的处理也与上面代码不同,这里是采用对n取余来得到答案。当now减少时,其值可能小于0,那么就先加上n,再对n取余就能得到结果;当now增加时,其值有可能大于n-1,因此直接对n取余就能得到结果。


两段代码对这个问题的处理思路基本一样,处理方法同样有值得学习的地方。

以上。

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

YUKIPEDIA~

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值