Word Embedding 之CBOW

3 篇文章 0 订阅
2 篇文章 0 订阅

CBOW

CBOW 是一个非常优秀的Word Embedding模型,其原理非常简单,本文章尝试深入模型内部,探索这个模型的性能和表现。

模型结构

准备

再介绍模型的网络结构之前,首先要介绍的是一个向量计算。假定特征为,
x = ( x 0 , x 1 , ⋯   , x n − 1 ) \bold{x}=(\bold{x_0},\bold{x_1},\cdots,\bold{x_{n-1}}) x=(x0,x1,,xn1)
其中 x i = ( a i , 0 , a i , 1 , ⋯   , a i , e − 1 ) \bold{x_i}=(a_{i,0},a_{i,1},\cdots,a_{i,e-1}) xi=(ai,0,ai,1,,ai,e1)。我们定义一种计算,
y = f ( x ) \bold{y}=f(\bold{x}) y=f(x)
其中 y i = ( y 0 , y 1 , ⋯   , y e − 1 ) \bold{y_i}=(y_{0},y_{1},\cdots,y_{e-1}) yi=(y0,y1,,ye1),而 y i = ∑ k = 0 n − 1 a k , i n y_i =\frac{\sum_{k=0}^{n-1}{a_{k,i}}}{n} yi=nk=0n1ak,i
换成tensorflow 的语言这个运算可以用下面的语言来描述

x = tf.placeholder(shape=[n, e], name='x', dtype=tf.float32)
y = tf.reduce_mean(x, axis = 1)

文字数字化

本节我们来讨论文字数字话的技术。大家都知道,文字本身在计算机看来是有一个编号和一个渲染逻辑的。当我们提到一个文字的时候,计算机看来,这个文字就是一个编号,这个编号现在用的最多的就是UTF-8编码;当我们看到一个文字的时候,计算机会找到文字编号对应的渲染逻辑,在LCD活着LED屏幕上点燃文字点阵。文字的点燃矩阵和文字的编码都是没有数学属性的,例如“美丽”和“漂亮”在上述的表示中没有任何数学上的关联。

为了克服上述问题,一个广泛使用的方法是one-hot,假定汉语中总共有 σ \sigma σ个字,第 i i i字用一个向量表示 w i = ( 0 , 0 , ⋯   , 0 , 1 , 0 , 0 , ⋯   , 0 ) \bold{w_i}=(0,0, \cdots ,0, 1,0,0, \cdots ,0) wi=(0,0,,0,1,0,0,,0),这个向量中除了第 i i i个位置为1之外,其他的位置为 0 0 0。这样一个句子就可以表示成n-hots 向量,这个向量具有一定的数学意义,在n-hots向量空间中夹角较小的句子有一定的语意相似性。

这种表示忽略了词汇本身的特征,没有挖掘出其合适的数学表示来。为了挖掘这种特性,通常的做法是先将文字表示成one-hot,然后作为一个神经网络层的输入。这个神经网络的输出为一个 e e e维的向量,网络的行为可以用如下的数学公式表示
y = x W \bold{y} = \bold{x}\bold{W} y=xW
其中 x \bold{x} x是词的one-hot表示, W \bold{W} W是一个形状为 σ × e \sigma \times e σ×e的矩阵。W的每一行为 n n n个从标准正态分布中取样的样本。随后 y y y值会被当成神经网络的输入。神经网络将通过梯度下降法学习W的最终表示,作为预料中词汇的合适数字表示。

构建损失函数

目前有很多种构建损失函数的方法,最早的方法是使用RNN,RNN的损失函数是通过预测下个一个词的分布来完成的。CBOW构建损失函数的方法是通过左右预测中间的方法。

基于RNN的方法

在这里插入图片描述
这种思路非常清晰,这里就不赘述了。思路就是序列根据前面的序列预测下一个。

基于CBOW的方法

CBOW的思路是通过两边预测中间的词。图中的SUM函数就是我们在准备中介绍的向量化计算。 w ( i ) w(i) w(i)就是文字数字化的输出。
在这里插入图片描述

class WordEmbedding:
    def __init__(self, embeding_size, vocabulary_size, window_size):
        self.__graph = tf.Graph()
        self.__session = tf.Session(graph=self.__graph)

        self.__embeding_size = embeding_size
        self.__vocabulary_size = vocabulary_size
        self.__window_size = window_size
        self.__epoch_num = 10
        self.__embedding = None


    def embedingInit(self, vocabulary_size, embeding_size, x_onehot):
        embedding = tf.Variable(tf.random_uniform([vocabulary_size, embeding_size]))
        self.__embedding = embedding
        x_vec = tf.nn.embedding_lookup(embedding, x_onehot)
        return x_vec

    def graphCreate(self, x_vec):
        hidden_state = tf.reduce_mean(x_vec, axis=1)
        weight = tf.Variable(tf.truncated_normal(shape=[self.__embeding_size, self.__vocabulary_size]), dtype=tf.float32)
        bias = tf.Variable(tf.truncated_normal(shape=[1, self.__vocabulary_size]), dtype=tf.float32)
        y_logit = tf.matmul(hidden_state, weight) + bias
        y_softmax = tf.nn.softmax(y_logit)
        return y_logit, y_softmax

    def calculateLoss(self, logits, labels):
        cost_array = tf.nn.sparse_softmax_cross_entropy_with_logits(logits=logits, labels=labels)
        return tf.reduce_sum(cost_array)

    def create_graph(self, batch_size):
        with self.__graph.as_default():
            self.__batch_size = tf.placeholder(dtype=tf.int32, name='batch_size')
            self.__x_ids = tf.placeholder(dtype=tf.int32, shape=[None, self.__window_size * 2], name="x_ids")
            self.__x_labels = tf.placeholder(dtype=tf.int32, shape=[None], name="x_lables")
            x_vec = self.embedingInit(self.__vocabulary_size, self.__embeding_size, self.__x_ids)
            tf.add_to_collection("infer", x_vec)
            y_logit, y_softmax = self.graphCreate(x_vec)
            cost = self.calculateLoss(y_logit, self.__x_labels)
            return cost, y_softmax


    def train(self, batch_sample, batch_label):
        batch_size = len(batch_sample[0])
        cost, y_softmax = self.create_graph(batch_size)
        with self.__graph.as_default():
            train = tf.train.AdamOptimizer().minimize(cost)
            self.__session.run(tf.global_variables_initializer())

            for i in range(self.__epoch_num):
                index_array = np.arange(len(batch_label))
                random.shuffle(index_array)
                for index in index_array:
                    if (len(batch_label[index]) != batch_size):
                        continue
                    _, lost_value = self.__session.run([train, cost], 
                                                       feed_dict={
                                                           self.__batch_size: batch_size,
                                                           self.__x_ids:batch_sample[index],
                                                           self.__x_labels:batch_label[index]
                                                       }
                                                    )
                    print(lost_value)

                save_path = tf.train.Saver(tf.trainable_variables(), max_to_keep=4).save(self.__session, "./data/model/model.ckpt")
                print(save_path)
	def infer(self, model_path):
		saver = tf.train.import_meta_graph(model_path + ".meta")
		with tf.Session() as sess:
			saver.restore(sess, model_path)
			y = tf.get_collection("infer")[0]
			graph = tf.get_default_graph()
			batch_size = graph.get_operation_by_name("batch_size").outputs[0]
			ids = graph.get_operation_by_name('x_ids').outputs[0]
			ret = sess.run(y, feed_dict={batch_size:[1], ids : [[2,3,4,5]]})
  • 0
    点赞
  • 4
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
Word2vec CBOW模型的代码可以在这篇文本处理算法汇总文章中找到。具体的代码如下所示: ``` from keras.models import Sequential from keras.layers import Embedding, Dense, Merge # 定义CBOW模型 model = Sequential() model.add(Embedding(nb_word, word_size, name='word2vec')) model.add(Dense(1, activation='sigmoid')) # 编译模型 model.compile(loss='binary_crossentropy', optimizer='adam') # 训练模型 model.fit(x_train, y_train, epochs=10, batch_size=32) ``` 其中,`nb_word`表示词汇表的大小,`word_size`表示词向量的维度。CBOW模型的主要思想是根据上下文预测中心词,通过优化词向量来提高预测准确性。 这里使用了Keras库来实现CBOW模型,第一层是一个Embedding层,用于将单词索引转换为词向量。然后通过一个全连接层(Dense)进行二分类预测。 请注意,这只是CBOW模型的代码示例,具体实现还需要根据你的数据和任务进行适当的调整和扩展。 参考资料: Word2vec用CBOW模型的keras代码 Embedding层的文档:https://keras.io/zh/layers/embeddings/<span class="em">1</span><span class="em">2</span><span class="em">3</span> #### 引用[.reference_title] - *1* *2* *3* [Word2vec用CBOW模型的keras代码详解](https://blog.csdn.net/weixin_40699243/article/details/109271365)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_1"}}] [.reference_item style="max-width: 100%"] [ .reference_list ]
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值