python 实战决策树之txt数据导入

首先将txt数据导入

两种方法 第一

将txt 转化为csv


注意 输出路径 不能更改 这能在根目录下

否则会报错


然后再通过np读取到


第二种  直接txt读取

 

但是 形式不一样 第二种属于元组

 np.loadtxt同样也能读取csv文件

但是直接读取会发生错误 


嗯哼 错误提示说类型转化出错 不过从上述错误可以看出 其类型是默认float的  查一下 loadtxt函数

loadtxt(fname, dtype=<class 'float'>, comments='#', delimiter=None, converters=None, skiprows=0, usecols=None, unpack=False, ndmin=0)

fname要读取的文件、文件名、或生成器。
dtype数据类型,默认float。还可以控制每一列的数据类型和精度等信息。
comments注释。
delimiter分隔符,默认是空格。
skiprows跳过前几行读取,默认是0,必须是int整型。
usecols:要读取哪些列,0是第一列。例如,usecols = (1,4,5)将提取第2,第5和第6列。默认读取所有列。

unpack如果为True,将分列读取。

故我们把类型设置为str


成功

但是有点难看,为什么 因为 没有正确分隔

CSV文件默认以英文逗号做为列分隔符,换行符作为行分隔符 故我们加了一个条件

c = np.loadtxt("file.csv", dtype=np.str,delimiter=",")


稍微好看一丢丢




阅读更多
文章标签: txt读取
个人分类: 机器学习
想对作者说点什么? 我来说一句

没有更多推荐了,返回首页

关闭
关闭
关闭