python 实战决策树之txt数据导入

原创 2018年04月16日 21:00:40

首先将txt数据导入

两种方法 第一

将txt 转化为csv


注意 输出路径 不能更改 这能在根目录下

否则会报错


然后再通过np读取到


第二种  直接txt读取

 

但是 形式不一样 第二种属于元组

 np.loadtxt同样也能读取csv文件

但是直接读取会发生错误 


嗯哼 错误提示说类型转化出错 不过从上述错误可以看出 其类型是默认float的  查一下 loadtxt函数

loadtxt(fname, dtype=<class 'float'>, comments='#', delimiter=None, converters=None, skiprows=0, usecols=None, unpack=False, ndmin=0)

fname要读取的文件、文件名、或生成器。
dtype数据类型,默认float。还可以控制每一列的数据类型和精度等信息。
comments注释。
delimiter分隔符,默认是空格。
skiprows跳过前几行读取,默认是0,必须是int整型。
usecols:要读取哪些列,0是第一列。例如,usecols = (1,4,5)将提取第2,第5和第6列。默认读取所有列。

unpack如果为True,将分列读取。

故我们把类型设置为str


成功

但是有点难看,为什么 因为 没有正确分隔

CSV文件默认以英文逗号做为列分隔符,换行符作为行分隔符 故我们加了一个条件

c = np.loadtxt("file.csv", dtype=np.str,delimiter=",")


稍微好看一丢丢




《机器学习实战》(三)决策树(decision trees)

决策树的构造 优点 计算复杂度不高,输出结果易于理解,对中间值的缺失不敏感,可以处理不相关特征数据。缺点 可能会产生过度匹配(overfitting)问题。试用数据范围 数值型和标称型。 信息增益:...
  • lixintong1992
  • lixintong1992
  • 2015年08月11日 17:01
  • 1391

Python3《机器学习实战》学习笔记(二):决策树基础篇之让我们从相亲说起

有读者反映,说我上篇文章Python3《机器学习实战》学习笔记(一):k-近邻算法(史诗级干货长文),太长了。一看那么长,读的欲望都降低了。既然如此,决策树的内容,我就分开讲好了。本篇讨论决策树的原理...
  • c406495762
  • c406495762
  • 2017年07月21日 16:44
  • 12287

python机器学习实战2:实现决策树

1.决策树的相关知识在之前的接触中决策树直观印象应该就是if-else的循环,if会怎么样,else之后再继续if-else直至最终的结果。在上节讲的kNN它其实已经可以完成很多任务,但是它最大的缺点...
  • Felaim
  • Felaim
  • 2017年05月02日 13:46
  • 760

决策树与随机森林相关概念及其Python实现

决策树所谓的决策树, 就是一种树形结构。其内部每个节点代表一个特征的测试,每个一个分支代表测试的输出,而每个叶子节点则代表一种类别。 而随机森林,就是指的一群决策树所组成的一个森林。当一个新的样本需...
  • wy250229163
  • wy250229163
  • 2016年07月20日 11:24
  • 1493

机器学习实战-python3决策树实例

工具:PythonCharm 书中的代码是python2的,而我用的python3,结合实践过程,这里会标注实践时遇到的问题和针对python3的修改。  实践代码和训练测试数据可以参考这里  htt...
  • tian544556
  • tian544556
  • 2017年12月09日 20:33
  • 158

PYTHON机器学习实战——决策树DT

决策树也是有监督机器学习方法。 决策树算法是找到一个优化的决策路径(决策树),使得每次分类尽可能过滤更多的数据,或者说问的问题尽量少。 决策树算法可以用来优化一些知识系统,帮助用户快速找到答案。 ...
  • xiaoxiaowenqiang
  • xiaoxiaowenqiang
  • 2017年08月05日 18:29
  • 272

机器学习实战python版第三章决策树代码理解

今天开始学习第三章决策树。 前面对决策树的讲解我就不写了,书上写的都很清楚,就是根据特征的不同逐步的对数据进行分类,形状像一个倒立的树。决策树算法比kNN的算法复杂度要低,理解起来也有一定难度。 ...
  • XD_Senior
  • XD_Senior
  • 2015年11月21日 22:42
  • 1268

Python3《机器学习实战》学习笔记(三):决策树实战篇之为自己配个隐形眼镜

上篇文章讲述了机器学习决策树的原理,以及如何选择最优特征作为分类特征。本篇文章将在此基础上进行介绍。主要内容包括:决策树构建、决策树可视化、使用决策树进行分类预测、决策树的存储和读取、sklearn实...
  • c406495762
  • c406495762
  • 2017年07月28日 15:30
  • 9748

机器学习实战笔记(三):决策树算法的Python实现

from math import log import operator def createDataSet(): dataSet = [[1, 1, 'yes'], ...
  • sinat_33397120
  • sinat_33397120
  • 2016年03月17日 15:35
  • 865

《机器学习实战》决策树(ID3算法)的分析与实现

一、简介         决策树是一个预测模型;他代表的是对象属性与对象值之间的一种映射关系。树中每个节点表示某个对象,而每个分叉路径则代表的某个可能的属性值,而每个叶结点则对应从根节点到该叶节点所经...
  • Gamer_gyt
  • Gamer_gyt
  • 2015年08月15日 09:13
  • 4199
收藏助手
不良信息举报
您举报文章:python 实战决策树之txt数据导入
举报原因:
原因补充:

(最多只允许输入30个字)