反尼姆游戏(anti-Nimm)

这篇博客讨论了 MisèreNim 游戏的策略,这是一种两人轮流取石子的游戏。文章指出,当石子数量为偶数个1时,先手必胜;若仅有一堆超过1的石子,先手可以通过保持异或和为0来确保胜利。代码实现展示了如何判断先手是否能获胜,并输出结果。
摘要由CSDN通过智能技术生成

题目描述

Alice and Bob are playing game of Misère Nim. Misère Nim is a game playing on k piles of stones, each pile containing one or more stones. The players alternate turns and in each turn a player can select one of the piles and can remove as many stones from that pile unless the pile is empty. In each turn a player must remove at least one stone from any pile. Alice starts first. The player who removes the last stone loses the game.

题解

首先从小的考虑。都是1的话,显然偶数个1就必胜。如果只有一堆多于1的话,异或和不为0,而且一定可以取完后剩下奇数个1。所以一般情况先手只要保持自己取过后异或和为0,这样下次自己取的时候异或和一定不是0,那就一定会出现只有一堆大于1的情况,这时就是自己赢了。

AC代码

//package com.company;

import java.util.Scanner;

public class Main {
    static final int NN=110;
    static int[] a=new int[NN];
    public static void main(String[] args) {
	    int t;
        Scanner in=new Scanner(System.in);
        t=in.nextInt();
        for(int z=1;z<=t;z++){
            int n=in.nextInt();
            int res=0;
            for(int i=1;i<=n;i++){
                a[i]=in.nextInt();
                res=res^a[i];
            }
            int all1=1;
            for(int i=1;i<=n;i++){
                if(a[i]!=1){all1=0;break;}
            }
            int win;
            if(all1==1){
                win=(n+1)%2;
            }
            else{
                win=((res!=0)?1:0);
            }
            System.out.print("Case "+z+": ");
            if(win==1){
                System.out.println("Alice");
            }
            else System.out.println("Bob");
        }
    }
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值