最近狂看机器学习,对数据挖掘算法甚是着迷。
“协同过滤”,“kNN”,“Bayes”,“k-means”,“决策树”这些都相对比较简单。涉及到距离和概率的计算。
推荐两本书
《数学之美》—— 纲领性书,激起对数学的兴趣。
《写给程序员的数据挖掘实践指南》—— 入门书,通俗易懂。
目前在啃《机器学习实战》,此书一大特色是狂用numpy,代码简洁优美,然而对数学公式解读不强。
看到第五章Logistic回归,一脸懵逼。
细细研究了一个礼拜,发现此章集微积分,线性代数,概率论为一体,相比之前章节,难度升了一个档次。
惭愧的是我还未全部解读通透。数学思维,强求不得,不急于一时,日后慢慢融会贯通。
地址如下:http://blog.csdn.net/dongtingzhizi/article/details/15962797
本文举的例子是最简单的回归,线性回归,用的方式是梯度下降。尽可能详细讲解!
给出四个点,用直线拟合,结果如下:
原始数据坐标(4个点):
x = [1, 3 , 5 , 7 ]
y = [5, 10.5, 16.8 , 23.1]
线性回归的思路:我们假设能用一条直线 y=kx+b 来串起所有的数据点。
那如何确定k和b的值?使得总误差最小!
假设k=3, b=2 .将4个x [1, 3, 5, 7 ]代入,计算得出四个y [5, 11, 17, 23],目测已经很接近了。
那此时的误差怎么算?我们一般用 [5, 11, 17, 23] 和 原始数据 [5, 10.5, 16.8 , 23.1] 的方差之和来表示:
所以我们的目标就是要使得这个SSE最小,(变量就是k和b!)