机器学习之线性回归

本文介绍了机器学习中的线性回归,通过实例解释了如何使用梯度下降法找到最佳拟合直线,同时探讨了线性回归的基础理论,包括误差函数和梯度下降的核心算法。此外,还提及了Logistic回归及其与线性回归的差异,并分享了相关资源和代码。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

最近狂看机器学习,对数据挖掘算法甚是着迷。

“协同过滤”,“kNN”,“Bayes”,“k-means”,“决策树”这些都相对比较简单。涉及到距离和概率的计算。

推荐两本书

《数学之美》—— 纲领性书,激起对数学的兴趣。

《写给程序员的数据挖掘实践指南》—— 入门书,通俗易懂。

目前在啃《机器学习实战》,此书一大特色是狂用numpy,代码简洁优美,然而对数学公式解读不强。

看到第五章Logistic回归,一脸懵逼。

细细研究了一个礼拜,发现此章集微积分,线性代数,概率论为一体,相比之前章节,难度升了一个档次。

惭愧的是我还未全部解读通透。数学思维,强求不得,不急于一时,日后慢慢融会贯通。


参考了[置顶] 【机器学习笔记1】Logistic回归总结

地址如下:http://blog.csdn.net/dongtingzhizi/article/details/15962797 


本文举的例子是最简单的回归,线性回归,用的方式是梯度下降。尽可能详细讲解!


给出四个点,用直线拟合,结果如下:



原始数据坐标(4个点):

x = [1, 3    , 5      , 7    ]
y = [5, 10.5, 16.8 , 23.1]


线性回归的思路:我们假设能用一条直线 y=kx+b 来串起所有的数据点。

那如何确定k和b的值?使得总误差最小!

假设k=3, b=2 .将4个x [1, 3, 5, 7 ]代入,计算得出四个y [5, 11, 17, 23],目测已经很接近了。

那此时的误差怎么算?我们一般用 [5, 11, 17, 23] 和 原始数据 [5, 10.5, 16.8 , 23.1] 的方差之和来表示:


所以我们的目标就是要使得这个SSE最小,(变量就是k和b!)


大笑大笑

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值