🔎大家好,我是Sonhhxg_柒,希望你看完之后,能对你有所帮助,不足请指正!共同学习交流🔎
📝个人主页-Sonhhxg_柒的博客_CSDN博客 📃
🎁欢迎各位→点赞👍 + 收藏⭐️ + 留言📝
📣系列专栏 - 机器学习【ML】 自然语言处理【NLP】 深度学习【DL】
🖍foreword
✔说明⇢本人讲解主要包括Python、机器学习(ML)、深度学习(DL)、自然语言处理(NLP)等内容。
如果你对这个系列感兴趣的话,可以关注订阅哟👋
文章目录
第 6 节:比较 Pandas 和 PandasAI:功能比较
Pandas AI 是一个附加的 Python 库,它通过结合生成人工智能功能来增强广泛使用的数据分析和操作工具 Pandas。
今天,我想分享数据分析领域令人兴奋的发展:PandasAI。
这个革命性的工具旨在增强您的数据分析任务,使它们更快、更高效并且非常有趣。
# 官方查询示例
import pandas as pd
from pandasai import PandasAI
df = pd.DataFrame({
"country": ["United States", "United Kingdom", "France", "Germany", "Italy", "Spain", "Canada", "Australia", "Japan", "China"],
"gdp": [19294482071552, 2891615567872, 2411255037952, 3435817336832, 1745433788416, 1181205135360, 1607402389504, 1490967855104, 4380756541440, 14631844184064],
"happiness_index": [6.94, 7.16, 6.66, 7.07, 6.38, 6.4, 7.23, 7.22, 5.87, 5.12]
})
# Instantiate a LLM
from pandasai.llm.openai import OpenAI
llm = OpenAI(api_token="YOUR_API_TOKEN")
pandas_ai = PandasAI(llm)
pandas_ai(df, prompt='Which are the 5 happiest countries?')
第 1 节:为什么 PandasAI 是数据分析的未来
说到 Python 中的数据分析,有一个库在其他库中遥遥领先:Pandas。
十多年来,Pandas 一直是操作和分析结构化数据的首选工具。然而,随着数据集继续变得越来越大和越来越复杂,需要一种能够毫不费力地应对这些挑战的工具。这就是 PandasAI 的用武之地。
PandasAI 利用 Pandas 的强大功能并将其与人工智能的功能相结合,以提供无缝且直观的数据分析体验。
凭借其先进的算法和自动化功能,PandasAI 可以轻松处理海量数据集,减少执行复杂数据操作所需的时间和精力。它可以智能地检测模式、异常值和缺失值,让您自信地做出数据驱动的决策。
个人提示:使用 PandasAI 时,请利用其自动数据清理功能。通过使用
clean_data()
和等函数impute_missing_values()
,您可以在预处理数据时节省大量时间和精力。在深入分析之前探索数据并了解其质量始终是个好主意。相信我,这一小步可以让您免于后顾之忧!
第 2 节:开始使用 PandasAI
那么,您如何开始使用 PandasAI?
第一步是安装库,只需在 Python 环境中运行以下命令即可:
pip install pandasai
安装 PandasAI 后,您可以使用以下代码将其导入 Python 脚本或 Jupyter Notebook:
import pandasai as pdai
为了让您了解 PandasAI 的功能,假设您有一个包含一些缺失值的数据集。
使用传统的 Pandas,您需要花时间手动识别和处理这些缺失值。但是,使用 PandasAI,您可以使用该impute_missing_values()
函数自动填补这些空白:
data = pd.read_csv('dataset.csv')
data_cleaned = pdai.impute_missing_values(data)
就这么简单!PandasAI 将智能地分析您的数据并使用适当的技术(例如均值插补或回归)填充缺失值。
这不仅可以节省您的时间,还可以确保您的分析基于完整可靠的数据。
第 3 节:探索 PandasAI 的力量
现在您对如何将 PandasAI 集成到数据分析工作流中有了基本的了解,让我们来探索它的一些强大功能和用例。
1. 自动化特征工程
数据分析中最耗时的方面之一是特征工程。从原始数据中提取有意义的信息并创建新功能通常需要广泛的领域知识和手动操作。然而,PandasAI 通过基于现有数据自动生成新特征来简化这个过程。
data = pd.read_csv('dataset.csv')
data_features = pdai.generate_features(data)
PandasAI 将分析您数据中的模式和关系,并创建捕获重要信息的新功能。这使您免于手动设计功能的繁琐任务,让您专注于洞察力和分析。
2.智能数据可视化
数据可视化是任何数据分析任务的重要组成部分,因为它可以帮助您了解隐藏在数据中的模式和趋势。借助 PandasAI,您可以利用其智能数据可视化功能轻松创建具有洞察力和信息量的可视化。
data = pd.read_csv('dataset.csv')
data_features = pdai.generate_features(data)
PandasAI 提供了一系列可视化功能,可以轻松创建令人惊叹的图表。从相关热图到散点矩阵,您只需几行代码即可将数据可视化,从而快速获得对数据的宝贵见解。
3. 简化模型评估
在构建机器学习模型时,评估其性能是一个关键步骤。PandasAI 通过提供一套用于模型评估和比较的函数来简化这个过程。
y_true = [0, 1, 1, 0, 1]
y_pred = [0, 1, 0, 0, 1]
pdai.plot_confusion_matrix(y_true, y_pred)
通过使用plot_confusion_matrix()
和 等函数plot_roc_curve()
,您可以轻松评估模型的性能并就其有效性做出明智的决策。
第 4 节:关于 PandasAI 的常见问题
问:PandasAI 是否兼容现有的 Pandas 代码?
是的!PandasAI 建立在 Pandas 之上,这意味着您可以将其无缝集成到您现有的代码库中。您可以继续使用您最喜欢的 Pandas 功能,同时享受 PandasAI 提供的额外功能。
问:PandasAI 如何处理大型数据集?
PandasAI 旨在高效处理大型数据集。它利用高级算法和优化来以最少的内存使用量对大规模数据执行计算。因此,无论您处理的是 GB 还是 TB 的数据,PandasAI 都能满足您的需求。
问:我可以为PandasAI的发展做贡献吗?
绝对地!PandasAI 是一个开源项目,始终欢迎来自社区的贡献。无论您是想建议新功能、报告错误还是提交代码改进,您都可以积极参与塑造 PandasAI 的未来。
问:PandasAI支持GPU加速吗?
目前,PandasAI 没有原生 GPU 加速。然而,它利用多核处理和并行计算技术来加速现代 CPU 上的计算。
第 5 节:PandasAI 的真实用例
作为一名经验丰富的数据分析师,我亲眼目睹了 PandasAI 对您的数据分析工作流程产生的变革性影响。它简化了复杂的任务,减少了手动工作,并使您能够专注于真正重要的洞察力和决策。无论您是初学者还是经验丰富的数据科学家,PandasAI 都可以提供一些东西来提高您的技能和生产力。
请记住,在使用 PandasAI 时,始终从了解您的数据开始,利用其自动清理和插补功能,并探索其强大的特征工程和可视化功能。与 Pandas 的集成确保您可以无缝过渡到 PandasAI,而无需进行任何重大代码更改。
所以,不要犹豫,试试 PandasAI!您会惊讶于它如何彻底改变您的数据分析流程并释放创新和发现的新机会。拥抱 PandasAI 的力量,让您的数据分析技能飙升到新的高度。
*使用 PandasAI 释放数据分析的全部潜力!
第 6 节:PandasAI 的真实用例
现在您已经很好地了解了 PandasAI 的力量和功能,让我们深入研究这个工具真正发挥作用的一些现实用例。
1. 财务数据分析
财务数据分析通常涉及处理庞大而复杂的数据集,例如股票市场数据或财务报表。PandasAI 可以毫不费力地处理这些数据集,让您能够进行深入分析、检测异常,并自信地做出数据驱动的投资决策。PandasAI 的自动化特征工程和可视化功能还可以帮助发现财务数据中隐藏的模式和趋势,使您获得竞争优势。
import pandasai as pdai
# 加载股市数据
stock_data = pdai.read_csv( 'stock_data.csv' )
# 计算股票价格的滚动平均值
stock_data[ 'Rolling Mean' ] = pdai.rolling_mean(stock_data[ 'Close' ], window= 30 )
# 可视化股票价格和滚动平均值
pdai.plot_line_chart(stock_data, x= 'Date' , y=[ 'Close' , 'Rolling Mean' ])
2. 客户细分
了解您的客户及其行为对于各个行业的企业都至关重要。借助 PandasAI,您可以根据各种属性和特征(例如人口统计数据、购买历史记录或浏览行为)轻松细分您的客户群。通过利用 PandasAI 的自动化特征工程功能,您可以提取有价值的见解并创建有针对性的营销活动,以提高客户满意度并推动收入增长。
import pandasai as pdai
# 加载客户数据
customer_data = pdai.read_csv( 'customer_data.csv' )
# 根据购买历史和人口统计数据进行客户细分
customer_segments = pdai.segment_customers(customer_data, features=[ 'Purchase History' , 'Age' , 'Gender' ])
# 可视化客户细分
pdai.plot_pie_chart(customer_segments, labels= 'Segment' , values= 'Count' )
3. 医疗保健分析
在医疗保健行业,分析大量患者数据对于做出明智的医疗决策和改善患者治疗效果至关重要。PandasAI 可以简化分析过程,使医疗保健专业人员能够从电子健康记录、临床试验数据或医学影像数据中提取有价值的见解。处理大型数据集并自动执行某些数据清理和特征工程任务的能力使 PandasAI 成为医疗保健分析中的宝贵工具。
import pandasai as pdai
# 加载患者数据
patient_data = pdai.read_csv( 'patient_data.csv' )
# 对患者数据进行分析
average_heart_rate = pdai.mean(patient_data[ 'Heart Rate' ])
diabetes_patients = pdai. filter (patient_data, condition= "Diabetes == 'Yes'" )
# 可视化平均心率
pdai.plot_bar_chart(x=[ 'All Patients' , 'Diabetes Patients' ], y=[average_heart_rate, len (diabetes_patients)])
第 6 节:比较 Pandas 和 PandasAI:功能比较
为了帮助您了解 PandasAI 带来的额外特性和功能,让我们在下表中将其与流行的 Pandas 库进行比较:
如您所见,PandasAI 提供了 Pandas 所缺乏的几个功能,例如自动数据清理、特征工程和智能数据可视化。
这些附加功能可以显着简化您的数据分析任务,并使您能够从数据中获得更深入的见解。
虽然 Pandas 是一个非常强大且使用广泛的库,但 PandasAI 通过将人工智能算法和自动化集成到流程中,将数据分析提升到一个新的水平。它提供了一种更高效、更直观的方式来处理大型数据集、自动执行重复性任务以及解锁数据中的隐藏模式。
以下是一些额外的代码片段,展示了如何使用 PandasAI 执行各种数据分析任务:
1. 自动化数据清洗
PandasAI 提供自动数据清理功能,可以处理常见的数据质量问题,例如缺失值和异常值。以下是如何使用 PandasAI 清理数据集的示例:
import pandasai as pdai
# 加载数据集
data = pdai.read_csv( 'data.csv' )
# 通过删除缺失值来清理数据集
cleaned_data = pdai.clean_data(data)
# 保存清理后的数据集
cleaned_data.to_csv('cleaned_data.csv', index=False)
2. 自动化特征工程
PandasAI 可以在现有特征的基础上自动生成新特征,为您节省时间和精力。以下是如何使用 PandasAI 执行自动化特征工程的示例:
import pandasai as pdai
# 加载数据集
data = pdai.read_csv( 'data.csv' )
# 生成新特征
transformed_data = pdai.generate_features(data)
# 保存转换后的数据集
transformed_data.to_csv( 'transformed_data.csv' , index= False )
3.智能数据可视化
PandasAI 提供了用于创建有洞察力的数据可视化的功能。以下是如何使用 PandasAI 创建散点图的示例:
import pandasai as pdai
import matplotlib.pyplot as plt
# 加载数据集
data = pdai.read_csv( 'data.csv' )
# 绘制两个变量的散点图
pdai.plot_scatter(data, x= 'Variable1' , y= 'Variable2 ' )
# 自定义绘图
plt.title('Scatter Plot')
plt.xlabel('Variable 1')
plt.ylabel('Variable 2')
plt.show()
4. 模型评估与比较
PandasAI 提供评估和比较机器学习模型的功能。以下是如何使用 PandasAI 评估分类模型的示例:
import pandasai as pdai
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LogisticRegression
# 加载数据集
data = pdai.read_csv( 'data.csv' )
# 将数据拆分为训练集和测试集
X_train, X_test, y_train, y_test = train_test_split (data.drop( 'target' , axis= 1 ), data[ 'target' ], test_size= 0.2 )
# 创建逻辑回归模型
model = LogisticRegression()
# 将模型拟合到训练数据
model.fit(X_train, y_train)
# 评估模型
accuracy = pdai.accuracy_score(y_test, model.predict(X_test))
confusion_matrix = pdai.confusion_matrix(y_test, model.predict(X_test))
# 绘制混淆矩阵
pdai.plot_confusion_matrix(confusion_matrix)
# 打印精度
print(f'模型精度:{accuracy}')
这些代码片段仅展示了 PandasAI 众多特性和功能中的一小部分。无论您是清理数据、工程特征、可视化见解还是评估模型,PandasAI 都可以简化和增强您的数据分析工作流程。
总结:用 PandasAI 释放数据的力量
PandasAI 是数据分析领域的游戏规则改变者。凭借其先进的 AI 功能以及与 Pandas 的无缝集成,它使数据分析师和科学家能够更高效、更有效地处理复杂任务。无论您是处理大型数据集、自动化特征工程还是可视化数据,PandasAI 都是您的首选工具。
你还在等什么?试试 PandasAI,看看它如何改变您的数据分析工作流程。正如我亲身经历的那样,这就是我要做的——我相信它将把你的数据分析技能提升到一个新的高度,并开启一个充满可能性的世界。快乐的分析!
*保持冷静并与 PandasAI 一起分析!