加速 LLM 训练和推理的技术,在训练和推理期间使用高达 100K 输入标记的大型上下文窗口:ALiBi 位置嵌入、稀疏注意力、FlashAttention、多查询注意力、条件计算和 80GB A100 GPU。
最近有几项关于新的大型语言模型 (LLM) 的公告,它可以消耗极大的上下文窗口,例如65K toke MosaicML 的(MosaicML 的MPT-7B-StoryWriter-65k+ )甚至 100K token
加速 LLM 训练和推理的技术,在训练和推理期间使用高达 100K 输入标记的大型上下文窗口:ALiBi 位置嵌入、稀疏注意力、FlashAttention、多查询注意力、条件计算和 80GB A100 GPU。
最近有几项关于新的大型语言模型 (LLM) 的公告,它可以消耗极大的上下文窗口,例如65K toke MosaicML 的(MosaicML 的MPT-7B-StoryWriter-65k+ )甚至 100K token