PCA(principal Component Analysis) 主成分分析

PCA(主成分分析)是数据在低维线性空间上的正交投影,目标是最大幅度地保留数据的方差。通过求最大特征值和对应的特征向量,实现数据的相关性削弱和信息集中。该方法在《PRML》和《Matrix cookbook》中有详细阐述。
摘要由CSDN通过智能技术生成

PCA(principal Component Analysis) 主成分分析

本文解决以下疑问:

1、什么是PCA?

2、为什么要求最大特征值?

3、为什么要投影到对应的特征向量?

——————————————————————————————————————————

1、什么是PCA?

有两种经常使⽤的PCA的定义,它们会给出同样的算法。这里讲第一种定义。

PCA可以被定义为数据在低维线性空间上的正交投影,这个线性空间被称为主⼦空间(principal subspace),使得投影数据的⽅差被最⼤化(Hotelling, 1933)。等价地,它也可以被定义为使得平均投影代价最⼩的线性投影。平均投影代价是指数据点和它们的投影之间的平均平⽅距离(Pearson, 1901)

这里写图片描述

这里写图片描述

2、为什么要求最大特征值?

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值