2、开启 Windows Server 自动化脚本编程之旅

开启 Windows Server 自动化脚本编程之旅

脚本编程的魅力与应用场景

在日常的服务器管理工作中,脚本编程能极大地提升效率和准确性。比如人力资源部门招聘了 100 人,只需让他们提供包含新用户信息的电子表格,然后使用脚本就能快速创建这些用户,原本需要 2 小时的工作,现在仅需 2 分钟。而且,在设置多个文件夹的访问控制列表时,脚本是确保所有标志都正确设置的唯一方法。

脚本编程的相关资源与系统要求

有许多资源可以辅助学习脚本编程,还会配备一张包含额外信息和软件组件的光盘,其内容如下:
|资源类型|详细说明|
| ---- | ---- |
|实验文件|包含 40 个实验的起始脚本、相同文本文件和完整的实验解决方案,且书中讨论的每个脚本都存放在对应章节编号的文件夹中|
|电子书|可使用 Adobe Acrobat Reader 在屏幕上查看电子版|
|脚本|包含所有实验的示例脚本和起始脚本|
|工具|有 PrimalScript 3.1 的 30 天评估版、WMI 管理工具以及 Windows 资源工具包的选定工具|

同时,运行相关脚本和工具需要满足一定的系统要求:
- 英特尔奔腾/Celeron 系列或 AMD k6/Athlon/Duron 系列,最低 233 MHz
- 64 MB 内存
- 1.5 GB 可用硬盘空间
- 能够支持 800 x 600 分辨率或更高的显示监视器
- CD - ROM 驱动器或 DVD 驱动器
- 微软鼠标或兼容的指点设备
- Windows Server 2003 或 Windows

先展示下效果 https://pan.quark.cn/s/a4b39357ea24 遗传算法 - 简书 遗传算法的理论是根据达尔文进化论而设计出来的算法: 人类是朝着好的方向(最优解)进化,进化过程中,会自动选择优良基因,淘汰劣等基因。 遗传算法(英语:genetic algorithm (GA) )是计算数学中用于解决最佳化的搜索算法,是进化算法的一种。 进化算法最初是借鉴了进化生物学中的一些现象而发展起来的,这些现象包括遗传、突变、自然选择、杂交等。 搜索算法的共同特征为: 首先组成一组候选解 依据某些适应性条件测算这些候选解的适应度 根据适应度保留某些候选解,放弃其他候选解 对保留的候选解进行某些操作,生成新的候选解 遗传算法流程 遗传算法的一般步骤 my_fitness函数 评估每条染色体所对应个体的适应度 升序排列适应度评估值,选出 前 parent_number 个 个体作为 待选 parent 种群(适应度函数的值越小越好) 从 待选 parent 种群 中随机选择 2 个个体作为父方和母方。 抽取父母双方的染色体,进行交叉,产生 2 个子代。 (交叉概率) 对子代(parent + 生成的 child)的染色体进行变异。 (变异概率) 重复3,4,5步骤,直到新种群(parentnumber + childnumber)的产生。 循环以上步骤直至找到满意的解。 名词解释 交叉概率:两个个体进行交配的概率。 例如,交配概率为0.8,则80%的“夫妻”会生育后代。 变异概率:所有的基因中发生变异的占总体的比例。 GA函数 适应度函数 适应度函数由解决的问题决定。 举一个平方和的例子。 简单的平方和问题 求函数的最小值,其中每个变量的取值区间都是 [-1, ...
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值