# 决策树模型 # 信息熵 # “谁是世界杯冠军”的信息量应该比5比特少。香农指出,它的准确信息量应该是: # H = -(p1logp1 + p2logp2 + ... + p32log32) # # 决策树的划分依据1:信息增益,根据信息的增益大小去判断特征的重要性,做出特征值的重要性判断。 # 信息增益表示得知特征X的信息而使得类Y的信息的不确定性减少的程度 # 特征A对训练数据集D的信息增益g(D,A),定义为集合D的信息熵H(D)与特征A给定条件下D的信息条件熵H(D|A)之差, # 即公式为:g(D,A)=H(D)-H(D|A) # # 决策树的划分依据2:ID3,信息增益最大的原则,CART 回归树,平方误差最小,分类树,基尼系数最小的准则 # 决策树的API, # sklearn.tree.DecisionTreeClassifier(criterion=’gini’,max_depth=None,random_state=None) # 决策树分类器 # criterion:默认是’gini’系数,也可以选择信息增益的熵’entropy’ # max_depth:树的深度大小 # random_state:随机数种子 # method:decision_path:返回决策树的路径 import pandas as pd import numpy as np from sklearn.tree import DecisionTreeClassifier,export_graphviz from sklearn.feature_extraction import DictVectorizer from sklearn.model_selection import train_test_split from sklearn.ensemble import RandomForestClassifier taitan=pd.read_csv(r"D:\学习\4机器学习算法基础\Data explorer\titan.csv") print(taitan.info()) #步骤1,选取数据 x=taitan[["Pclass","Sex","Age"]] y=taitan["Survived"] #填充缺失值 x["age"].fillna(x["age"].mean(),inplace=True) #分割数据集 x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.25) #类型数据编码,类型数据转化为one_hot编码 dictt=DictVectorizer(sparse=False) x_train=dictt.fit_transform(x_train.to_dict(orient="records")) print(dictt.get_feature_names()) x_test=dictt.transform(x_test.to_dict(orient="records")) #模型训练 dec=DecisionTreeClassifier() dec.fit(x_train,y_train) #预测的准确率 print("预测准确率",dec.score(x_test,y_test)) #导出决策树结构 # 1、sklearn.tree.export_graphviz()该函数能够导出DOT格式 # tree.export_graphviz(estimator,out_file='tree.dot’,feature_names=[‘’,’’]) # 2、工具:(能够将dot文件转换为pdf、png) # 安装graphviz # ubuntu:sudo apt-get install graphviz Mac:brew install graphviz # 3、运行命令 # 然后我们运行这个命令 # $ dot -Tpng tree.dot -o tree.png export_graphviz(dec, out_file="./tree.dot", feature_names=['年龄', 'pclass=1st', 'pclass=2nd', 'pclass=3rd', '女性', '男性']) # #随机森林算法:建立多个决策树 # # 集成学习方法:集成学习通过建立几个模型组合的来解决单一预测问题。它的工作原理是生成多个分类器/模型, # 各自独立地学习和作出预测。这些预测最后结合成单预测,因此优于任何一个单分类的做出预测。 # API接口 # sklearn.ensemble.RandomForestClassifier(n_estimators=10,criterion=’gini’, # max_depth=None, bootstrap=True,random_state=None) # 随机森林分类器 # n_estimators:integer,optional(default = 10) 森林里的树木数量 # criteria:string,可选(default =“gini”)分割特征的测量方法 # max_depth:integer或None,可选(默认=无)树的最大深度 # bootstrap:boolean,optional(default = True)是否在构建树时使用放回抽样 #随机森林预测 from sklearn.model_selection import GridSearchCV rf=RandomForestClassifier() #网格搜索与交叉验证 param={"n_estimators":[120,200,300,500,800,1200],"max_depth":[5,8,15,20,25]} gc=GridSearchCV(rf,param_grid=param) gc.fit(x_train,y_train) print("预测准确率",gc.score(x_test,y_test)) print("选择模型",gc.best_params_)
决策树模型学习
最新推荐文章于 2024-10-30 15:22:37 发布
文章介绍了如何使用决策树模型进行分类,包括信息熵、信息增益的概念,以及在Titanic数据集上进行预处理、训练和评估。接着,文章讨论了随机森林算法,解释了集成学习的概念,并展示了随机森林分类器的参数调优过程,通过GridSearchCV找到最佳参数并计算预测准确率。
摘要由CSDN通过智能技术生成