在人工智能不断渗透各行各业的今天,医疗领域对大模型的需求日益增加。如何在有限资源下训练出性能接近甚至媲美大规模参数模型的轻量级模型,知识蒸馏技术提供了一条切实可行的道路。 DeepSeek发布的6款蒸馏模型的成功,为大模型的构建和知识迁移提供了更多可能。本文将深入探讨在利用 DeepSeek蒸馏技术和外部高质量数据集构建医疗大模型。
一、什么是大模型蒸馏?
想象一下,你有一位知识渊博的老师(教师模型),他/她非常聪明,但可能有点“笨重”(模型参数多,计算量大)。你还想培养一位学生(学生模型),这位学生不需要像老师那样“博大精深”,但希望他/她能尽可能学到老师的精华,用更“轻巧”的方式(模型参数少,计算量小)完成任务,并且表现接近老师。
模型蒸馏 就是这样一种“知识迁移”的技术。它的核心思想是:
- 知识迁移: 将一个大型、复杂的 教师模型 中学到的知识,迁移到一个小型、简单的 学生模型 中。
- 目标: 让学生模型在保持较小模型体积和计算成本的同时,尽可能接近甚至达到教师模型的性能水平。
- 方法: 学生模型通过学习模仿教师模型的输出(例如,概率分布,也称为 "软标签"),或者学习教师模型中间层的特征表示,来学习教师模型的知识。
蒸馏的好处:
- 模型压缩: 得到更小的模型,更容易部署在资源受限的设备上(例如,手机、边缘设备)。
- 加速推理: 更小的模型计算速度更快,可以更快地给出结果。
- 知识提炼: 学生模型可以学习到教师模型更泛化的知识,有时甚至可以超越教师模型。
二、DeepSeek 发布的 6 款蒸馏模型性能
DeepSeek 确实发布了一系列蒸馏模型,旨在提供高性能且更易于部署的大语言模型。为了了解这 6 款蒸馏模型的具体性能,我们需要查找相关的官方信息或评测报告。
我将使用搜索工具来查找 DeepSeek 发布的蒸馏模型以及它们的性能信息。
模型蒸馏是一种将大型模型知识迁移到小型模型的技术,DeepSeek 也发布了一系列高性能的蒸馏模型。下面我来简单介绍一下:
DeepSeek 蒸馏模型性能概览
DeepSeek 发布了基于 Qwen2.5 和 Llama3 系列的 DeepSeek-R1-Distill 蒸馏模型,包括以下尺寸:
- 1.5B
- 7B
- 8B
- 14B
- 32B
- 70B
这些蒸馏模型旨在将大型模型的推理能力提炼到更小的模型中,从而在保持高性能的同时,降低计算成本和部署难度。
性能亮点:
- 媲美甚至超越 Open