Deepseek与中医:当全球AI遇上世界中医(二)干中学

接上一篇《Deepseek与中医:当全球AI遇上世界中医(一)》。不少朋友私信反馈了更多使用Deepseek的感受,以及探索中医AI发展的思路。今天将我的一些思考先发出来,抛砖引玉,听取更多朋友的卓见。

四、AI技术演进对中医的整体影响

这个部分是我的思考,这里抛出开放性问题,欢迎大家参与讨论。

 1、AI快速发展带来的新型健康风险生成机制

AI时代的健康状态也有新的变化,以下潜在风险值得关注:

1)AI应用焦虑症候群(表现为肝郁化火证候群)

2)AI沉浸综合征(形成屏幕依赖型体质特征)

3)信息超载性认知障碍(导致心神失养症型演变)

AI时代的好中医应该以新的视角辨证溯因,重新审视"形神合一"理论在虚拟-现实双重空间的应用维度。

2、AI诊疗建议与中医临床决策的认知冲突

在Deepseek等AI大模型工具的普及背景下,很有可能出现换着持AI生成的诊疗方案质疑专业中医师的现象。当人机诊断结论出现分歧时,可能加剧医患沟通中的认知冲突,这种新型医患关系模式对中医辨证体系提出新的临床挑战。

 3、临床经验传承的范式改变

    AI可能重构传统中医师承体系,具体表现在

1)基于AI大模型的医案知识库,有望实现历代名家经验的embedding高效检索与对比学习(Agentic RAG

2)基于Deepseek等推理思考大模型、协同数字人等技术,构建虚拟患者模拟系统(AI患者),支持辨证思维的多维度压力测试

3)在大模型的基础上结合知识图谱、机器学习等,搭建人机协同诊断平台,从而构建经验-数据双驱动决策模型

值得深入探讨的是:在保持中医整体观思维的前提下,如何通过AI辅助将以往中医5-10年的培养周期压缩至2-3年?这需要建立临床能力评估的量化指标体系,并解决隐性知识显性化的技术瓶颈。

4、诊疗技术有望出现范式创新

 AI正在催化中医药领域的四大核心技术突破:

1)基于深度神经网络学习的中药多靶点筛选技术

2)融合生物传感数据的针灸参数动态优化系统 

3)结合运动捕捉的推拿力学特征建模方法

4)整合基因组学的个性化治未病预测平台。

这些创新不仅需要AI工程技术的突破,更亟待建立符合中医理论特征的算法评价体系。

五、中医AI的技术演进图谱

这部分内容我在2024年一次中医药大会上做过专题报告,此处仅作脉络梳理:

1)中医AI启蒙期:专家系统(20世纪80-90年代)

基于规则库的辨证论治系统、单病种决策树推理框架

典型代表:关幼波肝病诊疗系统

2)知识图谱发展期(2000-至今)

中医经典文献语义网络构建、证-方-药多维关系图谱

3)大模型突破期(2020-2025年)

中医古籍、文献等预训练大语言模型(华佗、仲景等大模型)、多模态诊断融合系统(舌象/脉象/面诊联合分析)

当前瓶颈:脉诊信息量化与模型泛化能力

4)强化学习深化期(2025-2030年)

名医诊疗思维迁移学习框架、个性化辨证推理决策树

关键挑战:中医整体观的形式化表达

5)因果推断突破期(2011-至今)

方剂作用机制的因果发现模型、治未病干预效果的反事实推演

在保持"天人相应"理论内核的同时,构建可解释的干预模型

六、中医AI发展路径建议

基于行业现状分析及学科共性研究,提出系统化发展建议:

(一)应用深化:构建中医AI应用与研究生态

1、让更多中医真正用好Deepseek

目前大部分中医还没有真正认识到Deepseek等新一代AI大模型工具的价值,也没有真正在自己的学习与工作中应用起来。那么发展中医AI第一步就是让更多中医在辅助学习与诊疗训练 、病案分析与知识管理 、人机协同诊断决策等方面用好Deepseek等大模型工具。需要开展中医师AI素养培训,重点培养精准提问能力(即提示词工程,Prompt),通过优化提问方式充分释放AI应用潜力。在用好AI的基础上,中医才能提出更多的改进建议。

2、构建中医AI技术迭代研究体系

1)临床场景赋能验证

   - 四诊合参+中医大模型方剂推荐的人机协同模式探索

2)专家深度参与机制

   - 领域知识指导:组建中医本体论构建专家委员会

   - 联合研究设计:建立临床疗效评价的跨学科方法论

3)学科融合创新机制

针对目前中医人搞不懂AI,AI人理解不了中医思维,"中医理论阐释-技术创新应用"的协同困境,建议:

A: 双主导研发模式

   - 技术突破方向(AI专家主导)

     ∘ 创新价值:开发基于预训练、微调,强化学习的中医诊疗大模型

     ∘ 约束框架:遵循藏象学说、经络理论等基础理论

   - 守正创新方向(中医专家主导)

     ∘ 核心任务:实现辨证论治本质特征的技术映射

     ∘ 实施路径:开展名医经验输出(知识蒸馏),构建高质量推理思维链数据集

B: 跨学科对话平台建设

    - 中医概念、诊疗思路可解释性转化

   -  算法输出的中医理论映射

七、干中学:开放的中医AI研究与推广小组

鉴于很多中医朋友和AI朋友的强烈需求,我们计划牵头组织开放的中医AI研究与推广小组。具体行动如下,持续更新将在知识库中发布(去开放知识库中实时关注)。

1、 组建中医智库

首批50名临床中医成员,不论是中医名家,还是青年中医都可以加入,只要你对中医有思考、有经验,对AI有兴趣,对AI有想法都可以。欢迎联系报名。

2、成立AI技术研发小组

核心成员必须认同中医,可以是名校,也可以是多年经验的AI算法工程师、AI应用工程师等。

未来一起研究方向,中医大模型蒸馏、微调、强化学习、Agent、舌诊脉诊多模态等。欢迎联系报名。

3、资源整合

为中医AI推进小组提供足量Deepseek API、Deepseek的替代使用平台、显卡的支持等。

后期将与知名创投机构联合设立专项孵化基金,与公益基金会设立中医AI专项公益研究资金等。诚邀中医药机构、AI实验室、投资机构共建生态。

“这个世界需要两种人——一种是抬头看星的理想主义者,另一种是低头修路的实干家。而最幸运的是,我们正成为第三种人:把星光铺成道路的人”——梁文峰先生

还有两个tip:

1)AI医疗领域的技术、产业、投资的飞书知识库免费开放,持续更新,关注公众号,回复 “知识库”,获取。

2)喜欢中医AI朋友如果想愉快的使用Deepseek,我们近几日将开放免费的Deepseek(包含中医古籍库)给大家使用。

往期推读:

多家医院已部署Deepseek大模型,AI大模型在医院应用场景剖析

从DeepSeek爆火谈AI如何重塑全球医疗健康价值链

从Hippocratic AI融资1.41亿美元,看中国医疗智能体发展机会

医院如何建设自己的Deepseek大模型

世界经济论坛:80亿AI医生与4910亿美元AI健康医疗市场

PatientSeek:首个基于Deepseek r1的开源医疗法律推理模型

美国HHS 重磅发布 AI 战略计划:人工智能全面赋能医疗健康未来!

Deepseek与中医:当全球AI遇上世界中医(一)

公众号:创见数字健康

创见数字健康,探索数字健康领域(人工智能、大模型、具身智能)的前沿技术、深入洞察数字健康产业发展趋势、提供战略性数字健康分析,同时致力于为数字健康政策制定提供建设性意见。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

明哲AI

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值