01.仿生优化算法matlab仿真
文章平均质量分 88
本专栏从理论和matlab编程实现两个方面介绍各类仿生优化算法,测试所用目标函数为CEC2017标准函数。如粒子群,蚁群,狼群,鲸鱼,蛙跳,鸟群,蜂群等等一些列优化算法,并最后对所有优化算法做性能总结分析。
优惠券已抵扣
余额抵扣
还需支付
¥29.90
¥99.00
购买须知?
本专栏为图文内容,最终完结不会低于15篇文章。
订阅专栏,享有专栏所有文章阅读权限。
本专栏为虚拟商品,基于网络商品和虚拟商品的性质和特征,专栏一经购买无正当理由不予退款,不支持升级,敬请谅解。
Simuworld
仿真世界。专业从事MATLAB,simulink,FPGA等仿真工作。擅长通信信号处理,无线基带,深度学习,智能优化,图像处理等
展开
-
专题1:仿生优化算法目录
仿生优化算法是一种基于生物仿生学的优化方法,它通过模拟自然界中生物的进化、遗传、自然选择等过程来寻找最优解。仿生优化算法的基本思想是通过模拟自然界中生物的进化过程来寻找问题的最优解。它借鉴了生物的遗传、交叉、突变等机制,将问题的解看作是生物个体,并在搜索过程中不断调整和优化这些个体。算法通过模拟生物遗传过程,使用交叉、突变等操作对解进行更新和改进,使得新的解继承了父代解的一些优点,同时又具有一定的变异和创新。这种选择过程可以模拟自然选择机制,使得优秀的解有更多的机会被保留下来,逐步接近问题的最优解。原创 2023-09-27 13:11:43 · 555 阅读 · 0 评论 -
【ROA】鮣鱼优化算法(Remora Optimization Algorithm,ROA)理论分析与matlab性能仿真
鮣鱼优化算法(Remora Optimization Algorithm, ROA)是一种较新的生物启发式优化算法,灵感来源于自然界中的鮣鱼行为。鮣鱼是一类小型鱼类,它们具有吸盘状的头部结构,能够吸附在大型海洋生物(如鲸鱼、海龟、鲨鱼等)的身上,从而获得保护、节省能量并跟随大鱼捕食。这种共生关系启发了ROA的设计,用于解决优化问题。原创 2024-06-13 04:27:43 · 176 阅读 · 0 评论 -
【MVO】多元宇宙优化(Multi-verse Optimization, MVO)理论分析与matlab性能仿真
多元宇宙优化(Multiverse Optimization, MVO)是一种启发式优化算法,灵感来源于物理学中的多元宇宙概念,特别是量子力学和弦理论中的平行宇宙假说。它通过模拟多个并行存在的宇宙(搜索空间),在这些宇宙中进行探索和进化,以寻找全局最优解。在MVO框架中,每个“宇宙”代表一个潜在的解决方案,而“宇宙”的状态则由一组参数或变量定义。算法的目标是通过模拟这些宇宙之间的相互作用和演化过程,逐步逼近问题的全局最优解。原创 2024-05-18 00:04:28 · 196 阅读 · 0 评论 -
【BMO】磁性细菌优化(Magnetic Bacteria Optimization, MBO)理论分析与matlab性能仿真
磁性细菌优化算法是一种新兴的仿生优化方法,灵感来源于自然界中的磁性细菌(如趋磁性细菌)的行为。这类细菌能够感知地球磁场并利用其体内的磁小体进行定向移动,以寻找更适宜生存的环境。MBO算法模拟了这一生物现象,将其转化为解决工程优化问题的有效策略。MBO算法的核心在于模拟磁性细菌的群体运动特性,包括随机游走、磁感应导航以及群体互动行为。算法通过构建虚拟磁性细菌群落,利用个体与群体的相互作用,在解空间中搜索全局最优解。MBO算法的性能受到参数η,λ,σ,ϕ等的显著影响。原创 2024-05-07 18:30:50 · 93 阅读 · 0 评论 -
【BOA】蝴蝶优化(Butterfly optimization Algorithm,BOA)理论分析与matlab性能仿真
蝴蝶优化算法是一种受自然界中蝴蝶飞行行为启发的新型优化算法,旨在通过模拟蝴蝶在花丛间觅食和交配过程中的飞行模式,来搜索问题的最优解。该算法主要考虑了蝴蝶的四种典型行为:觅食、跟随、交配和繁殖,通过这些行为来探索和利用搜索空间,以求解全局最优解。觅食行为:模拟蝴蝶在搜索空间中随机飞行,以发现新的食物源(解)。设X={x1,x2,...,xn}表示搜索空间中的一个解,f(X)为适应度函数,评价解的质量。跟随行为:蝴蝶倾向于跟随其他蝴蝶的飞行轨迹,这一过程有助于局部搜索和信息共享。交配行为。原创 2024-05-07 18:18:52 · 205 阅读 · 0 评论 -
【TFWO】水基湍流优化(Turbulent Flow of Water-based Optimization,TFWO)理论分析与matlab性能仿真
水基湍流优化是一种基于水动力学原理的优化算法,它借鉴了自然界中水流运动的不规则性和混沌性,通过模拟水流的运动和变化过程,实现问题的优化求解。1.1、水基湍流优化的基本原理水基湍流优化算法以水流运动为灵感,将问题解看作是水分子,而问题的目标函数对应于水流中的阻力或重力等物理量。算法通过模拟水流运动中的物理规律和特性,寻找最优解。具体地,水基湍流优化算法将问题解看作是由粒子构成的,粒子的运动轨迹受到目标函数的约束。原创 2023-10-10 17:36:58 · 155 阅读 · 0 评论 -
【IWD】智能水滴算法(Intelligent Water Drops Algorithm,IWDA)理论分析与matlab性能仿真
智能水滴算法是一种基于水滴特性的智能优化算法,它借鉴了水滴在自然界中的运动和形态变化规律,通过模拟水滴的形成、发展和消亡过程,实现问题的优化求解。原创 2023-10-10 17:26:24 · 447 阅读 · 0 评论 -
【SOS】共生生物搜索(Symbiotic Organisms Search,SOS)理论分析与matlab性能仿真
共生生物搜索(Symbiotic Organisms Search,SOS)是一种基于生物共生理论的优化算法。该算法通过模拟生物共生系统中的合作与竞争行为,采用群体智能策略来寻找问题的最优解。下面详细介绍共生生物搜索的原理、数学公式及实际应用。共生生物搜索算法借鉴了生物共生理论,将问题的解看作是不同的生物种群,通过模拟生物共生系统中的合作与竞争行为来设计搜索策略。1.初始化种群首先,随机生成N个解,作为初始种群。每个解表示为x_i(i=1,2,...,N),代表问题的一个可能解。原创 2023-10-06 03:21:27 · 327 阅读 · 0 评论 -
【ICA】ICA竞争优化(imperialist competitive algorithm,ICA)理论分析与matlab性能仿真
ICA竞争优化(Imperialist Competitive Algorithm,ICA)是一种基于ICA竞争思想的优化算法。该算法通过模拟ICA竞争和扩张行为,采用群体智能策略来寻找问题的最优解。ICA优化算法主要包括以下几个部分:初始化首先,随机生成N个解。每个解表示为x_i(i=1,2,...,N),代表问题的一个可能解。每个解都有一个适应度值f(x_i),用于评估解的质量。计算目标函数值对于每个解x_i,计算其目标函数值f(x_i)。原创 2023-10-06 03:12:27 · 83 阅读 · 0 评论 -
【MVO】黑洞模拟优化(Multi-Verse Optimizer,MVO)理论分析与matlab性能仿真
黑洞模拟优化(Black Hole Simulation Optimization,BHSO)是一种基于黑洞理论的优化算法。该算法通过模拟黑洞的吞噬行为和奇点性质,采用群体智能策略来寻找问题的最优解。下面详细介绍黑洞模拟优化的原理、数学公式及实际应用。原创 2023-10-03 23:34:41 · 359 阅读 · 0 评论 -
【SSA】麻雀搜索优化算法(Sparrow Search Algorithm,SSA)理论分析与matlab性能仿真
麻雀搜索优化算法(Sparrow Search Algorithm,SSA)是一种受麻雀的觅食行为和反捕食行为启发的优化算法。该算法通过模拟麻雀群体的搜索行为,采用群体智能策略来寻找问题的最优解。下面详细介绍麻雀搜索优化算法的原理、数学公式及实际应用。1.1、麻雀搜索优化算法步骤麻雀是一种群居性鸟类,它们在寻找食物和逃避捕食者时会形成复杂的群体行为。麻雀搜索优化算法借鉴了麻雀的这些行为特点,通过模拟麻雀的觅食行为和反捕食行为来设计搜索策略。觅食行为麻雀在寻找食物时,会采用一种分散搜索的策略。原创 2023-10-03 23:27:44 · 122 阅读 · 0 评论 -
【FWA】烟花优化算法(Fireworks Algorithm,FWA)理论分析与matlab性能仿真
烟花优化算法(Fireworks Algorithm,FWA)是一种基于烟花爆炸行为的优化算法。该算法通过模拟烟花爆炸过程中的火花产生、爆炸和消失等行为,采用群体智能策略来寻找问题的最优解。1.1、烟花优化算法基本步骤烟花是一种在夜空中绽放的美丽景象,其爆炸过程中会产生大量的火花,这些火花会以不同的速度和方向向外扩散,并在一段时间后消失。烟花优化算法借鉴了烟花的这些行为特点,通过模拟烟花的爆炸过程来设计搜索策略。火花产生在烟花爆炸过程中,会产生大量的火花。原创 2023-10-03 23:14:23 · 143 阅读 · 0 评论 -
【GOA】蚱蜢优化算法(Grasshopper Optimisation Algorithm,GOA)理论分析与matlab性能仿真
蚱蜢优化算法(Grasshopper Optimization Algorithm,GOA)是一种基于蚱蜢群体行为启发的优化算法。该算法通过模拟蚱蜢的群体搜索、跳跃和繁殖行为,采用群体智能策略来寻找问题的最优解。下面详细介绍蚱蜢优化算法的原理、数学公式及实际应用。1.1、蚱蜢优化算法概述蚱蜢是一种具有独特行为的昆虫,它们在寻找食物和繁殖时,会形成复杂的群体搜索和跳跃行为。蚱蜢优化算法借鉴了蚱蜢的这些行为特点,通过模拟蚱蜢的群体搜索、跳跃和繁殖行为来设计搜索策略。1.1.1群体搜索行为。原创 2023-09-29 18:47:39 · 216 阅读 · 0 评论 -
【DAO】蜻蜓优化算法(Dragonfly Algorithm Optimization,DAO)理论分析与matlab性能仿真
蜻蜓优化算法(Dragonfly Optimization Algorithm,DOA)是一种基于蜻蜓群体行为启发的优化算法。该算法通过模拟蜻蜓的群体搜索、捕食和繁殖行为,采用群体智能策略来寻找问题的最优解。下面详细介绍蜻蜓优化算法的原理、数学公式及实际应用。蜻蜓是一种具有独特行为的昆虫,它们在寻找食物和繁殖时,会形成复杂的群体搜索和捕食策略。蜻蜓优化算法借鉴了蜻蜓的这些行为特点,通过模拟蜻蜓的群体搜索、捕食和繁殖行为来设计搜索策略。原创 2023-09-29 18:38:39 · 150 阅读 · 0 评论 -
【BSO】缎蓝园丁鸟优化算法(Blue Satin Bowerbird Optimization,BSO)理论分析与matlab性能仿真
缎蓝园丁鸟优化算法(Sindbis Bird Optimization Algorithm,SBOA)是一种基于自然鸟群行为启发的优化算法。该算法通过模拟缎蓝园丁鸟的觅食、繁殖和迁徙行为,采用群体搜索策略来寻找问题的最优解。1.1、缎蓝园丁鸟优化算法原理缎蓝园丁鸟是一种生活在澳大利亚和新几内亚地区的鸟类,具有独特的觅食、繁殖和迁徙行为。在寻找食物时,缎蓝园丁鸟会采用群体搜索策略,通过多只鸟协作来扩大搜索范围,同时通过竞争来避免搜索过程中的冗余。原创 2023-09-29 18:28:55 · 165 阅读 · 0 评论 -
【HHO】哈里斯鹰优化算法(Harris-hawks Optimization,HHO)理论分析与matlab性能仿真
HHO算法,即哈里斯鹰优化算法(Harris's Hawk Optimization),是一种元启发式算法,它受到哈里斯鹰的协作觅食行为的启发。这种算法在搜索阶段和开发阶段之间切换,以适应环境的不断变化和猎物的逃跑模式。原创 2023-09-27 12:51:06 · 235 阅读 · 0 评论 -
【CSO】猫群优化算法(Cat Swarm Optimization,CSO)理论分析与matlab性能仿真
CSO猫群优化(Cat Swarm Optimization,CSO)是一种基于群体智能的优化算法,它受到猫的行为和群体捕食行为的启发。CSO通过模拟猫群在寻找食物过程中的行为,实现了一类随机搜索算法的设计,具有简单、易实现、高效等优点。CSO算法假设猫群中每个猫个体的搜索能力是有限的,且每个猫个体在搜索过程中会产生一定程度的误差。通过模拟猫群搜索行为,CSO算法能够在全局范围内快速搜索并找到最优解。在CSO算法中,每个猫个体都根据自身的搜索经验和群体内其他猫个体的搜索信息来更新自身的状态。原创 2023-09-27 12:20:45 · 125 阅读 · 0 评论 -
【KHA】磷虾群优化算法(Krill Herd Algorithm,KHA)理论分析与matlab性能仿真,使用CEC2017测试
磷虾群优化(Krill Herd Optimization,简称KHO)是一种群体智能算法,模仿了磷虾在自然界中的觅食行为。该算法由Gandomi等人于2012年提出,主要应用于全局优化问题。与其他群体智能算法相比,磷虾群优化具有更好的全局搜索能力和更快的收敛速度。原创 2023-06-23 15:20:34 · 142 阅读 · 0 评论 -
【SSA】麻雀搜索算法(Sparrow Search Algorithm, SSA)理论分析与matlab性能仿真,使用CEC2017测试
麻雀搜索算法是一种新兴的群智能算法,它模拟了麻雀在寻找食物和逃避危险时的行为,并且通过群体协作实现优化问题的求解。本文将从数学模型、算法实现和应用方面详细介绍麻雀搜索算法。一、数学模型麻雀搜索算法通过模拟麻雀在寻找食物和逃避危险时的行为来实现优化问题的求解。在算法中,每只麻雀代表一个解,整个鸟群代表一个解集。鸟群中每只鸟的位置表示解的变量值,鸟群的适应度表示解的优劣程度。算法的目标是通过不断迭代,不断优化适应度,最终得到最优解。算法中涉及到的主要数学模型如下:鸟群位置更新公式。原创 2023-06-20 23:50:28 · 136 阅读 · 0 评论 -
【GOA】蝗虫优化算法(Grasshopper Optimisation Algorithm,GOA)理论分析与matlab性能仿真,使用CEC2017测试
自然界中的很多生物都具有优秀的生存能力和适应性,其中包括蝗虫。蝗虫优化算法(Grasshopper Optimization Algorithm,简称GOA)是一种基于蝗虫行为特点的优化算法,它模拟了蝗虫在食物和掠食者之间的生存策略,具有较强的全局搜索和局部搜索能力,被广泛应用于函数优化、工程设计、机器学习等领域。蝗虫优化算法的求解过程可以分为三个主要步骤:初始化种群、蝗虫交互和位置更新。下面将详细介绍这三个步骤的具体实现。蝗虫群的位置移动。原创 2023-06-16 00:24:48 · 141 阅读 · 0 评论 -
【MFO】飞蛾扑火优化算法(Moth Flame Optimization,MFO)理论分析与matlab性能仿真,使用CEC2017测试
在自然界中,不同种类的昆虫利用不同方法来辨认方向。食物,同类的气味,温度高低等因素都能成为昆虫确定活动方向的因素。飞蛾主要依靠月光来判定方向,它总是使月光从一个方向投射到眼中,这样就找到了大致的飞行方向。飞蛾在逃避天敌的追逐,或者绕过障碍物转弯以后,它只要不断地转弯,月光仍将从原先的方向射来,它也就再次找到了方向。假设候选解是飞蛾,问题的变量是飞蛾在空间中的位置:这里n为种群规模,d为空间维度。原创 2023-04-30 06:06:07 · 375 阅读 · 0 评论 -
【GSO】萤火虫优化算法(Glowworm Swarm Optimization, GSO)理论分析与matlab性能仿真,使用CEC2017测试
2005年,印度学者K.N.Krishnanand和D.Ghose在IEEE群体智能会议上提出了一种新的群智能优化算法,人工萤火虫群优化(Glowworm Swarm Optimization, GSO)算法。2009年,剑桥学者Xin-She Yang根据自然界中萤火虫的发光行为提出萤火虫算法(Firefly Algorithm, FA)。自这两种萤火虫算法提出以来,各国学者对这两种算法进行了研究、改进和应用。经过几年的发展,在连续空间的寻优过程和一些生产调度方面萤火虫算法具有良好的应用前景。原创 2023-04-16 17:32:41 · 173 阅读 · 0 评论 -
【BA】蝙蝠优化算法(Bat Algorithm,BA)理论分析与matlab性能仿真,使用CEC2017测试
蝙蝠算法(Bat Algorithm,BA)算法是模拟自然界中蝙蝠利用一种声呐来探测猎物、避免障碍物的随机搜索算法即模拟蝙蝠利用超声波对障碍物或猎物进行最基本的探测、定位能力并将其和优化目标功能相联系。BA算法的仿生原理将种群数量为的蝙蝠个体映射为D维问题空间中的NP个可行解,将优化过程和搜索模拟成种群蝙蝠个体移动过程和搜寻猎物利用求解问题的适应度函数值来衡量蝙蝠所处位置的优劣,将个体的优胜劣汰过程类比为优化和搜索过程中用好的可行解替代较差可行解的迭代过程。原创 2023-04-01 15:38:10 · 352 阅读 · 0 评论 -
【GEO】金鹰优化算法(Golden eagle optimizer, GEO)理论分析与matlab性能仿真
Mohammadi-Balani等人于2021年提出的金鹰优化算法(Golden Eagle Optimizer, GEO),是一种受鹰群捕猎行为启发的优化算法,通过调整攻击系数和巡航系数的值来完成从探索到开发的过渡。金鹰算法作为一个优秀进化算法已成功优化许多工程问题,在算法迭代前首先会生成一个随机解 X∈(x1,x2,...,xn) ,之后算法将根据金鹰捕猎时的飞行方式,进行巡航和攻击。原创 2023-02-28 02:13:51 · 292 阅读 · 0 评论 -
【GWO】灰狼优化算法(Grey Wolf Optimizer, GWO)理论分析与matlab性能仿真,使用CEC2017测试
由澳大利亚格里菲斯大学(Griffith University)研究学者 Seyedali Mirjalili 于 2014 年提出,是一种模拟自然界中灰狼的等级制度与狩猎行为的群智能优化算法,具有操作简单、调节参数少、编程易实现等特点。首先介绍了 GWO 的仿生学原理及其进化公式,然后对 GWO 的进化过程进行描述,最后给出 GWO 的伪代码与时间复杂度分析。α \alphaα 位于顶端,代表狼群中的头狼,负责做出狩猎,休息等决策;原创 2023-02-16 05:07:08 · 290 阅读 · 0 评论 -
【WOA】鲸鱼优化算法(Whale Optimization Algorithm,WOA)理论分析与matlab性能仿真,使用CEC2017测试
WOA算法设计的既精妙又富有特色,它源于对自然界中座头鲸群体狩猎行为的模拟, 通过鲸鱼群体搜索、包围、追捕和攻击猎物等过程实现优时化搜索的目的。在原始的WOA中,提供了包围猎物,螺旋气泡、寻找猎物的数学模型。首先,座头鲸可以识别猎物的位置并将其包围,但由于最佳位置在搜索空间中不是已的,因此WOA算法假定当前最佳候选解决方案是目标猎物或接近最佳猎物。确定最佳搜索代理后,其他搜索代理将因此尝试更新其对最佳搜索代理的位置。鲸鱼的搜索范围是全局解空间,需要先确定猎物的位置以便包围。原创 2023-01-24 01:38:08 · 786 阅读 · 0 评论 -
【ACO】蚁群优化算法(Ant Colony Optimization,ACO)理论分析与matlab性能仿真,使用CEC2017测试
蚁群算法(ant colony optimization)最早是由Marco Dorigo等人在1991年提出,他们在研究新型算法的过程中,发现蚁群在寻找食物时,通过分泌一种称为信息素的生物激素交流觅食信息从而能快速的找到目标,据此提出了基于信息正反馈原理的蚁群算法。蚁群算法的基本思想来源于自然界蚂蚁觅食的最短路径原理,根据昆虫科学家的观察,发现自然界的蚂蚁虽然视觉不发达,但它们可以在没有任何提示的情况下找到从食物源到巢穴的最短路径,并在周围环境发生变化后,自适应地搜索新的最佳路径。原创 2023-01-12 23:26:26 · 187 阅读 · 0 评论 -
【PSO】粒子群优化算法(Particle Swarm Optimization,PSO)理论分析与matlab性能仿真,使用CEC2017测试
PSO算法是一种随机的、并行的优化算法。它的优点是:不要求被优化函数具有可微、可导、连续等性质,收敛速度较快,算法简单,容易编程实现。PSO算法一般适用于一类高维的、存在多个局部极值点而并不需要得到很高精度解的优化问题。PSO的实现步骤如下:①初始化群体粒子群的位置和速度,计算适应值②根据pareto支配原则,计算得到Archive 集(存放当前的非劣解)③计算pbest④计算Archive集中的拥挤度⑤在Archive集选择gbest⑥更新粒子的速度、位置、适应值。原创 2023-01-07 06:23:46 · 328 阅读 · 0 评论 -
【CEC2017】CEC2017优化算法目标测试函数综述以及CEC2017的matlab实现
CEC2017共有30个单目标测试函数分别是:单峰函数(F1-F3)、简单多峰函数(F4-F10)、混合函数(F11-F20)和组合函数(F21-F30)。测试维度包含:10D、30D、50D、100D。CEC2017测试问题随着维度的增加求解极其困难。CEC测试函数数量较多,在本专栏的后续所有优化算法中,我们将选择F1~F5,F11~F15一共十组测试函数进行测试。原创 2023-01-03 20:36:36 · 4146 阅读 · 0 评论