第六、七课支持向量机

Support vector machines

SVM是监督性学习中属于基于“距离隔板”一类,该方法被认为是其中效果最好的方法之一。为了介绍SVM首先介绍margin和利用距离大小分离数据的概念。然后介绍optimal margin classi er,中间会使用到拉格朗日对偶。此外我们会介绍kernal,它能使SVM算法在高维特征空间上更加有效率。最后我们将介绍SMO优化算法,用于高效地SVM算法进行计算。

1.Margins

对于两组可完全分离的数据,可找到一个seperating hyperplane,使得两组数据分别位于该平面两侧,平面上的点满足 θTx=0
这里写图片描述

2.Notation

引入新的分类器形式:
这里写图片描述
g(z)=1 if z>=0,otherwise g(z)=1
该函数直接给出分类,而不是可能性。

3.Functional and geometric margins

对于给定的一个训练样本,对应样本的functional margin为:
这里写图片描述
该值应该恒大于0,该值越大,说明正确的可能性越高,分类效果越好。同一样本, ωb 乘以一个倍数,functional margin同样会以相同倍数增加,因此可以对 ω 进行归一化消除该歧义。
对于一个样本集合,对应的functional margin为所有样本的functional margin的最小值:
这里写图片描述]![这里写图片描述
类似的,定义样本的geometric margins:
这里写图片描述
样本集合的geometric margins:
这里写图片描述
值得注意的是,geometric margins不随 ω 的变化而改变。

4.The optimal margin classi er

根据上述分析,将该问题用公式表述:
这里写图片描述
即在一定约束条件下,使样本集对应的geometric margin最小,此时所对应的参数即为分离平面的参数,也就是optimal margin classi er。
因为上述约束中含有非凸约束,因此不宜求最优解,因此将问题表述进行转化:
这里写图片描述

再引入约束
这里写图片描述
得到问题最终转化形式
这里写图片描述
这种形式的优化问题能够使用quadratic programming (QP) code进行求解。

5.Lagrange duality

对于下面的问题:
这里写图片描述
定义Lagrangian为:
这里写图片描述
βi 叫做Lagrange multipliers。我们令L的偏导数为0:
这里写图片描述
解得 ωβ .

对该问题进行拓展,使得该方法能够解决约束中存在不等式的情况。定义primal optimization problem:
这里写图片描述
定义generalized Lagrangian为:
这里写图片描述
下表p的含义为primal,可以证明,当 ω 违反了约束条件,那么:
这里写图片描述
反之 θp(w)=f(w). ,因此我们得到:
这里写图片描述
因此将问题转化为:
这里写图片描述
其中 p=minωθp(ω) 我们叫做the value of the primal problem。
接下来我们定义该问题的对偶定义:
这里写图片描述
这里写图片描述
这里写图片描述
因为对一个函数先求极小再求极大总小于等于小球极大再求极小,我们得到:
这里写图片描述
但是在一些条件下,我们也可以得到:
这里写图片描述
我们来看看这些条件是什么:
假设f和g是凸函数,h是affine。假设约束g是可行的,即存在一些w使得g(w)<0对所有i都成立,在这些假设下,一定存在满足要求的解,并且 p=d .并且,存在如下条件Karush-Kuhn-Tucker (KKT)conditions :
这里写图片描述
由条件5和7得到,如果 αi>0 ,那么 gi(w)=0
之后我们会提到 SVM只存在少数量的支持向量,KKT也会在SMO算法中得到使用。

6.Optimal margin classi ers

回到之前讨论的最优margin分类的问题,我们已经得到如下表示:
这里写图片描述
约束为:
这里写图片描述
注意到当 αi>0 ,functional margin等于1。
这里写图片描述
事实上,如上图,只有距离超平面最近的几个点对应的 αi>0 ,这几个点的坐标称为Support vectors。
对于我们的问题建立拉格朗日算式:
这里写图片描述

这里写图片描述
得到
这里写图片描述

这里写图片描述
综合上式得到
这里写图片描述
这里写图片描述
得到问题的转化形式:
这里写图片描述
解出 α 即可表示出w。
容易证明:
这里写图片描述
当我们进行预测时,使用如下式子进行计算:
这里写图片描述
该式表明再进行预测时我们只需要计算待测点坐标与支持向量的内积。下节我们将应用该性质,得到支持向量机的算法。

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
提供的源码资源涵盖了安卓应用、小程序、Python应用和Java应用等多个领域,每个领域都包含了丰富的实例和项目。这些源码都是基于各自平台的最新技术和标准编写,确保了在对应环境下能够无缝运行。同时,源码中配备了详细的注释和文档,帮助用户快速理解代码结构和实现逻辑。 适用人群: 这些源码资源特别适合大学生群体。无论你是计算机相关专业的学生,还是对其他领域编程感兴趣的学生,这些资源都能为你提供宝贵的学习和实践机会。通过学习和运行这些源码,你可以掌握各平台开发的基础知识,提升编程能力和项目实战经验。 使用场景及目标: 在学习阶段,你可以利用这些源码资源进行课程实践、课外项目或毕业设计。通过分析和运行源码,你将深入了解各平台开发的技术细节和最佳实践,逐步培养起自己的项目开发和问题解决能力。此外,在求职或创业过程中,具备跨平台开发能力的大学生将更具竞争力。 其他说明: 为了确保源码资源的可运行性和易用性,特别注意了以下几点:首先,每份源码都提供了详细的运行环境和依赖说明,确保用户能够轻松搭建起开发环境;其次,源码中的注释和文档都非常完善,方便用户快速上手和理解代码;最后,我会定期更新这些源码资源,以适应各平台技术的最新发展和市场需求。
提供的源码资源涵盖了安卓应用、小程序、Python应用和Java应用等多个领域,每个领域都包含了丰富的实例和项目。这些源码都是基于各自平台的最新技术和标准编写,确保了在对应环境下能够无缝运行。同时,源码中配备了详细的注释和文档,帮助用户快速理解代码结构和实现逻辑。 适用人群: 这些源码资源特别适合大学生群体。无论你是计算机相关专业的学生,还是对其他领域编程感兴趣的学生,这些资源都能为你提供宝贵的学习和实践机会。通过学习和运行这些源码,你可以掌握各平台开发的基础知识,提升编程能力和项目实战经验。 使用场景及目标: 在学习阶段,你可以利用这些源码资源进行课程实践、课外项目或毕业设计。通过分析和运行源码,你将深入了解各平台开发的技术细节和最佳实践,逐步培养起自己的项目开发和问题解决能力。此外,在求职或创业过程中,具备跨平台开发能力的大学生将更具竞争力。 其他说明: 为了确保源码资源的可运行性和易用性,特别注意了以下几点:首先,每份源码都提供了详细的运行环境和依赖说明,确保用户能够轻松搭建起开发环境;其次,源码中的注释和文档都非常完善,方便用户快速上手和理解代码;最后,我会定期更新这些源码资源,以适应各平台技术的最新发展和市场需求。
支持向量机(Support Vector Machine,SVM)是一种常用的机器学习算法,既可以用于分类问题,也可以用于回归问题。在这里,我先给你介绍一下支持向量机回归(Support Vector Machine Regression,SVR)。 支持向量机回归是一种非线性回归方法,它通过寻找一个最优的超平面来拟合数据。与传统的回归方法不同,SVR不仅考虑了数据点的拟合程度,还考虑了模型的复杂度。SVR的目标是找到一个最优的超平面,使得大部分数据点都落在该超平面的ε-tube内,并且尽量使得落在ε-tube之外的数据点的个数最少。 在SVR中,我们需要选择一个核函数来将数据映射到高维空间中,从而使得数据在高维空间中线性可分。常用的核函数有线性核、多项式核、高斯核等。通过引入松弛变量和惩罚项,SVR可以灵活地处理不同类型的数据。 与支持向量机分类类似,支持向量机回归也依赖于支持向量,即距离超平面最近的一些数据点。这些支持向量决定了超平面的位置和形状。在预测阶段,SVR通过计算新样本点与超平面的距离,来预测其对应的输出值。 支持向量机(SVM)是一种常用的机器学习算法,主要用于分类问题。它通过在特征空间中找到一个最优的超平面,将不同类别的样本点分开。SVM的目标是找到一个最大间隔的超平面,使得不同类别的样本点尽可能远离超平面。 SVM的核心思想是将低维的样本点映射到高维空间中,从而使得数据在高维空间中线性可分。通过引入松弛变量和惩罚项,SVM可以处理线性不可分的情况。此外,SVM还可以使用核函数来处理非线性分类问题。 在预测阶段,SVM通过计算新样本点与超平面的距离,来判断其所属的类别。距离超平面较远的样本点被认为是支持向量,它们决定了超平面的位置和形状。 总结一下: - 支持向量机回归(SVR)是一种非线性回归方法,通过寻找一个最优的超平面来拟合数据。 - 支持向量机(SVM)是一种常用的机器学习算法,主要用于分类问题,通过找到一个最大间隔的超平面来分开不同类别的样本点。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值