SVM - 基础篇Sklearn

  • SVM的基本思想
  • 训练一个简单SVM模型
  • 调节SVM参数:Soft margin问题:调节C参数、伽马γ参数

下一次补充SMO算法的学习

  • 基本知识补充
#【基本知识补充】
#random_state参数:https://blog.csdn.net/yangyiwxl/article/details/71641355
#numpy.random.RandomState函数用法:https://blog.csdn.net/xylin1012/article/details/71931900
#numpy.random.rand使用方法:https://blog.csdn.net/you_are_my_dream/article/details/53494801
#make_blobs官方文档:http://scikit-learn.org/dev/modules/generated/sklearn.datasets.make_blobs.html

  1. SVM的基本思想
import numpy as np
import matplotlib.pyplot as plt
from scipy import stats
get_ipython().run_line_magic('matplotlib', 'inline')
#using seaborn plotting defaults
import seaborn as sns; sns.set()
#【基本思想】 1,2,3
#1)随机生成点,并画图
from sklearn.datasets.samples_generator import make_blobs
X, y = make_blobs(n_samples=50, centers=2, random_state=0, cluster_std=[0.6,0.8]) #X返回array[n_samples, n_features] ,y返回array [n_samples] 值为0或1
plt.scatter(X[:,0], X[:,1], c=y, s=50, cmap='autumn') #绘制散点图

#2) 画几条线,看看哪个好,这里斜率定了
#参考plt.scatter参数解释:https://blog.csdn.net/qiu931110/article/details/68130199
#np.linspace(): https://blog.csdn.net/grey_csdn/article/details/54561796
xfit = np.linspace(-1, 3.5) #返回等间隔数列,默认为50个
plt.scatter(X[:,0], X[:,1], c=y, s=50, cmap='autumn') #生成散点图,前2个参数导入数据,c控制color,s代表点大小,cmap风格
plt.plot([0.6], [2.1], 'x', color='blue', markeredgewidth=2, markersize=10) #生成了一个点,图中蓝色的

for m, b in [(1,0.65), (0.5, 1.6), (-0.2, 2.9)]: #绘制3条直线
    plt.plot(xfit, m*xfit + b, '-k')
plt.xlim(-1, 3.5)

#3) 划线,有间隔距离
xfit = np.linspace(-1, 3.5)
plt.scatter(X[:,0], X[:,1], c=y, s=50, cmap='autumn')

for m, b, d in [(1, 0.65, 0.33), (0.5, 1.6, 0.55), (-0.2, 2.9, 0.2)]:
    yfit = m*xfit + b
    plt.plot(xfit, yfit, '-k')
    plt.fill_between(xfit, yfit-d, yfit + d, edgecolor = 'none', color = '#AAAAAA', alpha=0.4)
    
    plt.xlim(-1, 3.5)


2 训练一个基本的SVM
#1)导出svm中的一个分类器模块SVC
from sklearn.svm import SVC 
model = SVC(kernel='linear') #这是线性的支持向量机
model.fit(X,y)
SVC(C=1.0, cache_size=200, class_weight=None, coef0=0.0,
  decision_function_shape='ovr', degree=3, gamma='auto', kernel='linear',
  max_iter=-1, probability=False, random_state=None, shrinking=True,
  tol=0.001, verbose=False)
#2)绘图模块
def plot_svc_decision_function(model, ax=None, plot_support=True):
    if ax is None:
        ax = plt.gca()
    xlim = ax.get_xlim()
    ylim = ax.get_ylim()
    
    #create grid to evaluate model
    x = np.linspace(xlim[0], ylim[1], 30)
    y = np.linspace(ylim[0], ylim[1], 30)
    Y, X = np.meshgrid(y, x)
    xy = np.vstack([X.ravel(), Y.ravel()]).T
    P = model.decision_function(xy).reshape(X.shape)
    
    # plot decision boundary and margins
    ax.contour(X, Y, P, colors='k',
               levels=[-1, 0, 1], alpha=0.5,
               linestyles=['--', '-', '--'])
    
    # plot support vectors
    if plot_support:
        ax.scatter(model.support_vectors_[:, 0],
                   model.support_vectors_[:, 1],
                   s=300, linewidth=1, facecolors='none');
    ax.set_xlim(xlim)
    ax.set_ylim(ylim)
plt.scatter(X[:, 0], X[:, 1], c=y, s=50, cmap='autumn')
plot_svc_decision_function(model);

* 这条线就是我们希望得到的决策边界啦
* 观察发现有3个点做了特殊的标记,它们恰好都是边界上的点
* 它们就是我们的*support vectors*(支持向量)
* 在Scikit-Learn中, 它们存储在这个位置 ``support_vectors_``(一个属性)
#3)sklearn会存储SV(Support_vectors_),可以知道每个支持向量的坐标
model.support_vectors_
array([[0.44359863, 3.11530945],
       [2.33812285, 3.43116792],
       [2.06156753, 1.96918596]])
* 观察可以发现,只需要支持向量我们就可以把模型构建出来
* 接下来我们尝试一下,用不同多的数据点,看看效果会不会发生变化
* 分别使用60个和120个数据点
# 4) 验证决策边界只受支持向量SV点影响,不受其他点影响
def plot_svm(N=10, ax=None):
    X, y = make_blobs(n_samples=200, centers=2,
                      random_state=0, cluster_std=0.60)
    X = X[:N]
    y = y[:N]
    model = SVC(kernel='linear', C=1E10)
    model.fit(X, y)
    
    ax = ax or plt.gca()
    ax.scatter(X[:, 0], X[:, 1], c=y, s=50, cmap='autumn')
    ax.set_xlim(-1, 4)
    ax.set_ylim(-1, 6)
    plot_svc_decision_function(model, ax)

fig, ax = plt.subplots(1, 2, figsize=(16, 6))
fig.subplots_adjust(left=0.0625, right=0.95, wspace=0.1)
for axi, N in zip(ax, [60, 120]):
    plot_svm(N, axi)
    axi.set_title('N = {0}'.format(N))

# 5)引入核函数
from sklearn.datasets.samples_generator import make_circles
X, y = make_circles(100, factor=.1, noise=.1)

clf = SVC(kernel='linear').fit(X, y)

plt.scatter(X[:, 0], X[:, 1], c=y, s=50, cmap='autumn')
plot_svc_decision_function(clf, plot_support=False);

# 5)加入了新的维度, 从2维到3维
from mpl_toolkits import mplot3d
r = np.exp(-(X ** 2).sum(1))
def plot_3D(elev=30, azim=30, X=X, y=y):
    ax = plt.subplot(projection='3d')
    ax.scatter3D(X[:, 0], X[:, 1], r, c=y, s=50, cmap='autumn')
    ax.view_init(elev=elev, azim=azim)
    ax.set_xlabel('x')
    ax.set_ylabel('y')
    ax.set_zlabel('r')

plot_3D(elev=45, azim=45, X=X, y=y)

# 6)加入径向基函数:高斯变换
clf = SVC(kernel='rbf', C=1E6)
clf.fit(X, y)
SVC(C=1000000.0, cache_size=200, class_weight=None, coef0=0.0,
  decision_function_shape='ovr', degree=3, gamma='auto', kernel='rbf',
  max_iter=-1, probability=False, random_state=None, shrinking=True,
  tol=0.001, verbose=False)
plt.scatter(X[:, 0], X[:, 1], c=y, s=50, cmap='autumn')
plot_svc_decision_function(clf)
plt.scatter(clf.support_vectors_[:, 0], clf.support_vectors_[:, 1],
            s=300, lw=1, facecolors='none');

使用这种核支持向量机,我们学习一个合适的非线性决策边界。这种核变换策略在机器学习中经常被使用!

3 调节SVM参数:Soft Margin问题 —— 调节C参数、伽马γ参数
#* 当C趋近于无穷大时:意味着分类严格不能有错误
#* 当C趋近于很小的时:意味着可以有更大的错误容忍


#1) 产生数据
#这里数据跟之前一样,增大了离散程度cluster_std, 数据更密,更不容易分了。
X, y = make_blobs(n_samples=100, centers=2,
                  random_state=0, cluster_std=0.8)
plt.scatter(X[:, 0], X[:, 1], c=y, s=50, cmap='autumn');

#2) 画图,看C参数变化
X, y = make_blobs(n_samples=100, centers=2,
                  random_state=0, cluster_std=0.8)

fig, ax = plt.subplots(1, 2, figsize=(16, 6))
fig.subplots_adjust(left=0.0625, right=0.95, wspace=0.1)

#这里有两个C参数,C越大,要求越严格,更不能分类错误,泛化能力更差一些
for axi, C in zip(ax, [10.0, 0.1]):
    model = SVC(kernel='linear', C=C).fit(X, y)
    axi.scatter(X[:, 0], X[:, 1], c=y, s=50, cmap='autumn')
    plot_svc_decision_function(model, axi)
    axi.scatter(model.support_vectors_[:, 0],
                model.support_vectors_[:, 1],
                s=300, lw=1, facecolors='none');
    axi.set_title('C = {0:.1f}'.format(C), size=14)

#3) 看另一个参数γ,越大的γ值,模型越复杂,特征映射的维度越高,越复杂的边界泛化能力越低
X, y = make_blobs(n_samples=100, centers=2,
                  random_state=0, cluster_std=1.1)

fig, ax = plt.subplots(1, 2, figsize=(16, 6))
fig.subplots_adjust(left=0.0625, right=0.95, wspace=0.1)

#这里有两个伽马γ值
for axi, gamma in zip(ax, [10.0, 0.1]):
    model = SVC(kernel='rbf', gamma=gamma).fit(X, y)
    axi.scatter(X[:, 0], X[:, 1], c=y, s=50, cmap='autumn')
    plot_svc_decision_function(model, axi)
    axi.scatter(model.support_vectors_[:, 0],
                model.support_vectors_[:, 1],
                s=300, lw=1, facecolors='none');
    axi.set_title('gamma = {0:.1f}'.format(gamma), size=14)











  • 0
    点赞
  • 5
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值