8月28日,由极链科技与复旦大学联合主办的「VideoNet视频内容识别挑战赛」颁奖仪式在中国多媒体大会ChinaMM2019圆满落幕。极链科技AI实验室负责人张奕博士为优胜队伍颁发奖牌。
经过近3个月的激烈角逐以及组委会的最终验证,「VideoNet视频内容识别挑战赛」正式落下帷幕。中科院自动化所的朱贵波、胡益珲,与来自北京工业大学的王琦、卢哲、李则昱组成的队伍一举夺冠,赢得五万元奖金;另有以赵宏烨,石珍生、关城、曹亮杰为代表的队伍分别二、三等奖收入囊中。优胜者被邀请参加,并在多媒体大会论坛上进行口头报告。
口头报告环节中,来自中科院自动化所的朱贵波、胡益珲,与来自北京工业大学的王琦、卢哲、李则昱从视频识别、目标检测、场景识别和试验结果几个方向进行了详细的介绍,并对主办方极链科技和复旦大学,及中科院自动化研究所模式识别国家重点实验室以及北京工业大学可视信息处理实验室致谢。
以赵宏烨为代表的队伍,从物体检测、场景识别、数据处理等方向做了详细的分析。
石珍生、关城、曹亮杰代表队伍,则讲述了他们参与比赛的动机及数据集比赛的方式,并对整个队伍的比赛进程做了介绍。
关于VideoNet视频内容识别挑战赛
「VideoNet视频内容识别挑战赛」是由极链科技与复旦大学联合主办的视频识别领域竞赛,致力于挖掘培养相关领域的优秀研究者,引导其积极参与到基于VideoNet得多维度视频内容识别研究与挑战中来,从而促进多维度智能识别技术在视频产业中的发展和落地,推动物体、场景等多维度视频内容识别在人工智能与视频产业中的应用。
自6月18日「VideoNet视频内容识别挑战赛」公布训练和验证数据集以来,截止到8月12日,注册报名的队伍已超过360支,其中参赛队伍当中有来自中科院、北京大学、中国科学技术大学等顶尖高校队伍以及来自阿里巴巴、京东、华为、腾讯、大华等众多知名企业队伍。
关于VideoNet视频数据集
近年来,随着深度学习技术的发展,涌现出大量针对物体、场景、人脸、动作等维度的识别技术,在各自的目标维度上取得了明显的进步。但是目前各视频识别算法基本都是针对单一维度来设计的,无法利用各维度之间存在的丰富的语义关联建立模型,提高识别准确度。当前也缺乏一个包含多维度标注的大规模视频数据集来为多维度视频识别算法研究提供训练测试数据支持。
为了推动物体、场景等多维度视频内容识别在人工智能与视频产业中的应用,本次「VideoNet视频内容识别挑战赛」,面向参赛者开放出了由极链科技与复旦大学联合推出的全新视频数据集VideoNet,该数据集包含353类事件,超过166类场景和214类物体,总视频数近9万。其中60%作为训练集,20%作为验证集,20%作为测试集。VideoNet数据集对视频进行了事件分类标注,并针对每个镜头的关键帧进行了场景和物体两个维度的共同标注,充分体现了多维度内容之间的语义联系。
核心技术的不断突破持续为社会、行业和客户带来更多的价值。此次「VideoNet视频内容识别挑战赛」圆满落幕,也推动了视频识别技术的发展,树立了智能视频分析技术评测的规范。未来,极链科技也将持续深耕视频AI领域,加速更多AI技术的应用落地。