短视频内容理解和推荐算法比赛大揭秘

本文揭示了短视频内容理解和推荐背后的算法原理,通过参加由今日头条举办的短视频内容理解与推荐竞赛,介绍了推荐算法的类型,如基于内容、协同过滤和混合推荐算法,并分享了特征工程和模型训练的关键步骤。比赛中采用了特征降维、统计特性、时间相关特征和局部特征构造等方法,结合SVD、决策树和FM算法进行模型训练,展示了如何将用户行为转化为精准推荐。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

投稿:极链科技
作者:点心(AI实验室)

 

不知不觉,你是否发现身边的小伙伴们都在疯狂的玩抖音,刷微博,你的购物APP也变得越来越聪明,很了解你想要的东西,就连点个外卖,美团和饿了么都知道你想要吃什么呢?是什么黑科技让这些APP变得如此神通,能深深的吸引着你的目光和味蕾呢?其实,之所以你觉得它越来越聪明越来越懂你,当然少不了你跟它之间的亲密“沟通”,看似不经意的一次点击,一次停留,它都默默的记了下来,等待你的再次临幸。这位神秘的幕后主使就是我们今天要讲的——个性化推荐算法。目前它已经深入到互联网的各类产品中,也经历了数次更新迭代,变得越来越贴心了。接下来,我将通过一个近期我们参加比赛具体讲解一些其中的算法原理。

这次比赛是由今日头条主办的短视频内容理解与推荐竞赛,我们的成绩在大规模亿级的赛道中拿了第四名,千万级数据规模的赛道中第五名。这也是我们极链AI实验室首次尝试推荐算法。

首先,来讲讲什么是推荐算法。推荐算法大致可以分为三类:基于内容的推荐算法协同过滤推荐算法混合推荐算法。基于内容的推荐算法,原理是将用户喜欢和自己关注过的Item在内容上类似的Item推荐给用户,比如你看了复仇者联盟1,基于内容的推荐算法发现复仇者联盟2、3、4,这些与你以前观看的item在内容上有很大关联性。协同过滤算法,包括基于用户的协同过滤和基于item的协同过滤,其中基于用户的协同过滤是通过用户之间的相似性

本教程为官方授权出品伴随着数据时代的到来,作为发掘数据规律的重要手段,机器学习已经受到了越来越多的关注。而作为机器学习算法数据上的典型应用,推荐系统已成为各行业互联网公司营销体系中不可或缺的一部分,而且已经带来了真实可见的收益。目前,推荐系统机器学习已经成为各公司的发力重点,众多知名公司(如亚马逊、netflix、facebook、阿里巴巴、京东、腾讯、新浪、头条等)都在着眼于将蕴含在庞数据中的宝藏发掘出来,懂机器学习算法数据工程师也成为了新时代最紧缺的人才。精心打造出了机器学习与推荐系统课程,将机器学习理论与推荐系统项目实战并重,对机器学习推荐系统基础知识做了系统的梳理阐述,并通过电影推荐网站的具体项目进行了实战演练,为有志于增加数据项目经验、扩展机器学习发展方向的工程师提供更好的学习平台。本课程主要分为两部分,机器学习推荐系统基础,与电影推荐系统项目实战。第一部分主要是机器学习推荐系统基础理论的讲解,涉及到各种重要概念基础算法,并对一些算法用Python做了实现;第二部分以电影网站作为业务应用场景,介绍推荐系统的开发实战。其中包括了如统计推荐、基于LFM的离线推荐、基于模型的实时推荐、基于内容推荐等多个模块的代码实现,并与各种工具进行整合互接,构成完整的项目应用。通过理论实际的紧密结合,可以使学员对推荐系统这一数据应用有充分的认识理解,在项目实战中对数据的相关工具知识做系统的回顾,并且可以掌握基本算法,入门机器学习这一前沿领域,为未来发展提供更多的选择,打开通向算法工程师的门。谁适合学:1. 有一定的 Java、Scala 基础,希望了解数据应用方向的编程人员2. 有 Java、Scala 开发经验,了解数据相关知识,希望增加项目经验的开发人员3. 有较好的数学基础,希望学习机器学习推荐系统相关算法的求职人员
评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值