在安装TensorFlow-gpu的时候踩了很多坑,在这里做一记录
1、 首先安装Anaconda3,安装时注意勾选add anaconda to my PATH environment variable,这样可以省去安装完后再去配置系统变量、环境变量等步骤,可以先看一下这个文章里面关于anaconda的介绍:会对理解后面的步骤很有帮助!https://www.jianshu.com/p/eaee1fadc1e9
2、 安装pycharm,pycharm是一款与anaconda可以非常好的衔接的IDE,所以推荐使用;
3、 安装英伟达cuda,要根据GPU型号选择对应的版本,具体可以https://blog.csdn.net/zpc17875305019/article/details/90287995,安装完cuda后还要再安装一下CudNN,这个文件包也是在英伟达官网下载。下载后解压后将对应的三个文件下的文件复制一下即可,
4、 接下来就是创建一个环境,打开anaconda prompt或者cmd命令窗口,利用conda create –n my_venv python==3.6
(这里的my_venv即是你要注意最好不要用python内置包重复的名字,否则最后在使用的时候可能会报错),创建好环境后,用conda activate my_venv,进入环境。
5、 然后可以利用pipinstallTensorFlow-gpu指令安装TensorFlow-gpu,但是通常会出现报错的情况,如果是SSL error,一般是由于源的问题可以通过以下办法解决:
cd :C:\users(你的用户名)
mkdir pip
cd pip
cd.>pip.ini
然后打开C:\users(你的用户名)\pip\pip.ini 文件,在里面复制
[global]
Index-url=http://pypi.douban.com/simple
[install]
Trusted-host=pypi.douban.com
然后保存,关闭文件。
接下来就可以通过刚才的指令安装TensorFlow-GPU包了,注意,安装后你在Lib/site-packges里看不见这个包,但是你可以通过一段简单的测试代码测试是否安装成功。
import tensorflow as tf
hello = tf.constant(‘Hello, TensorFlow!’)
sess = tf.Session()
print(sess.run(hello))
输出:
b’ Hello, TensorFlow!
则表明安装成功!
6、 安装好环境后,打开pycharm,打开file-settings-project interpreter,单机右边的齿轮图标添加本地解释器,切换到existing environment,找到刚刚安装的TensorFlow环境里的python.exe,然后点击ok,这样就可以在你的project中使用你刚刚创建的带有TensorFlow-gpu库的虚拟环境。
在使用TensorFlow过程中,自己新建的文件文件夹,最好都不要使用带有python内部包的文件名,以避免出现不必要的报错。
Anaconda+TensorFlow-gpu安装最详细采坑
最新推荐文章于 2024-09-09 23:34:51 发布