推荐算法
王大宝的CD
数据挖掘爱好者~
展开
-
推荐系统概述
已经很长一段时间没写过东西了,一方面确实是乱七八糟的事情比较多,另一方面也确实是懒,所以趁着现在实验室没那么多活儿要干了,想要写写博客梳理梳理自己学习的一些东西。至于为什么会选择推荐系统,你看看我们这种转行狗的学习路径就明白了。作为一名名字听起来很吓人的理工科专业学生,coding我们是比不过那些科班的同学的,唯一可能也不一定有的优势就是咱们的数理基础相对会好一点(也不一定),所以肯定会选择算...原创 2019-01-05 16:47:01 · 583 阅读 · 0 评论 -
推荐系统-基于物品的协同过滤(Item-based CF)
今天我们来聊一聊基于物品的协同过滤即Item-based CF方法。有了上一篇的经验,你可能很容易就想到Item-based CF就是通过计算物品之间的相似度,然后用户曾与那些商品发生过交互,给他推荐与这些商品最接近的东西给他。这样做有什么好处呢?可解释性!虽然同样是计算相似度,但User-based只能说某个人看起来和你兴趣一致,他喜欢过这个所以我给你推荐这个;而Item-baed则是你曾经看过...原创 2019-01-13 15:20:58 · 7557 阅读 · 3 评论 -
推荐系统-基于用户的协同过滤(User-based CF)
基于邻域的算法应该算是推荐系统中最基础的算法之一了,主要包括基于用户的协同过滤和基于物品的协同过滤,我觉得他们是最符合直觉的推荐算法了。你想想看,如果给你若干人的行为数据,你怎么去做推荐,一个就是找到和他最相似的用户,因为他们臭味相投,所以看看这些用户都看了些啥,然后给他推荐这些用户看过而待推荐用户没看过的商品;另一个就是找到和用户历史放生交互的商品最相似的商品,用户以前喜欢过它,也许会喜欢和它相...原创 2019-01-09 15:58:10 · 11293 阅读 · 1 评论 -
推荐系统-隐因子模型(LFM)
今天我们来聊一聊LFM(Latent Factor Model)的故事,这也算是我们在推荐系统里第一个用到的学习算法了吧,前面讲的两个协同过滤都是基于统计来的。协同过滤的思路就是基于用户和物品的交互行为,要么计算用户间的相似度,推荐相似度高的用户喜欢的物品,因为这两个用户可能兴趣相投;要么就是计算物品间的相似度,推荐和历史记录相似度很高的物品,因为他们可能属于同一类别的商品。我们做决策的基础都...原创 2019-01-21 16:10:44 · 6190 阅读 · 4 评论