推荐系统-基于物品的协同过滤(Item-based CF)

今天我们来聊一聊基于物品的协同过滤即Item-based CF方法。有了上一篇的经验,你可能很容易就想到Item-based CF就是通过计算物品之间的相似度,然后用户曾与那些商品发生过交互,给他推荐与这些商品最接近的东西给他。这样做有什么好处呢?可解释性!虽然同样是计算相似度,但User-based只能说某个人看起来和你兴趣一致,他喜欢过这个所以我给你推荐这个;而Item-baed则是你曾经看过这个,所以我给你推荐了和这个相似的也许你会喜欢。很明显,第二种更具可解释性,毕竟那是从你直接发生过交互的商品中来的,而人与人之间的相似度,通过简单的统计其实并不能很好的衡量。

那么如何进行Item-baed CF呢?首先是计算物品之间的相似度。这里计算相似度并没有引进物品的属性,而是简单地通过分析用户的历史行为记录进行计算,简单地讲,就是如果有用户购买了某商品的同时又买了其他的商品,那么很有可能这两个商品就是相似的,所以还是可以用余弦相似度来度量

User-baesd CF我们建立了物品用户倒排表方便我们统计对同一商品存在交互的用户,避免把大量的时间浪费在计算没有交互的用户上,这里类似地我们建立用户商品倒排表,对某一用户发生过的所有物品进行两两之间的统计来计算物品之间的相似度,具体实现如下

def Item_Similarity(train):
    # Co-rated items between users
    C = {}
    N = {}
    W = {}
    for user, items in train.items():
        for i in items:
            if i not in N.keys():
                N[i] = 0
            N[i] += 1
            if i not in C.keys():
           
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值