克莱姆V(克莱姆相关系数、克莱姆关联系数、独立系数)

本文介绍了克莱姆V(Cramer's V)的相关性分析方法,用于衡量分类数据之间的相关程度。通过Matlab代码实现,详细解析计算过程,包括列联表构建、期望次数计算、皮尔森卡方统计量及Cramer's V的计算。文中提供两个示例验证了函数的正确性,并提供了参考文献。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

前些时间需要衡量多个分类数据之间两两相关程度,想找出最相关的一对分类数据;于是想到了曾经看过的克莱姆相关系数,但在网上搜了好久之后,即没发现Matlab现成的built-in函数,也没找到别人分享的Matlab代码,于是决定自己动手写一个~

克莱姆V(Cramer’s V),又称为克莱姆相关系数、克莱姆关联系数、独立系数等,是双变量相关分析的一种方法,专门用于衡量分类数据与分类数据之间相关程度。该系数取值范围为0到1,0表示两个变量无关,1表示完全相关。

这里主要参考【高桥 信/著, 陈刚/译. 漫画统计学. 科学出版社, 2009: 127-142.】中的内容,基于matlab实现计算克莱姆V的函数。首先给出函数代码:

function [ cramer_V ] = CramersV( x1,x2 )
%Author: https://blog.csdn.net/jbb0523
%Version: 1.0@2019-05-27
%Description: compute variable Cramer's V between x1&x2
%Reference: 高桥 信/著, 陈刚/译. 漫画统计学. 科学出版社, 2009: 127-142.
    %Step 1: Observed frequency(contigency table )
    sym_x1 = unique(x1);
    sym_x2 = unique(x2);
    contigency_tab = zeros(length(sym_x1),length(sym_x2));
    for i=1:len
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

a useful man

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值