常见的深度学习参数初始化方法总结

目录

1 随机初始化

2 Xavier初始化

3 He初始化

4 高斯随机初始化 with Batch Norm

5 Pre-train

Reference


在这里插入图片描述

1 随机初始化

 

2 Xavier初始化

每层的权重初始化公式如下
在这里插入图片描述
上式为一个均匀分布,n_j为输入层的参数,n_(j+1)为输出层的参数

Xavier的推导过程是基于几个假设的,

其中一个是激活函数是线性的,这并不适用于ReLU,sigmoid等非线性激活函数;

另一个是激活值关于0对称,这个不适用于sigmoid函数和ReLU函数它们不是关于0对称的。

3 He初始化

Xavier初始化没有考虑激活函数,在某些非线性激活函数上表现不好(大部分激活函数都是有效的),如Relu。因此针对Relu推导了一次,与上面过程类似,只是方差要除以2。

每层的权重初始化公式如下:
在这里插入图片描述
为一个均值为0方差为2/n的高斯分布。

4 高斯随机初始化 with Batch Norm

 

5 Pre-train

在实际训练中,我们可以选择一个backbone网络,在其基础上做改动。该网络如果有一个已经训练好的在任务A上的模型(称为pre-trained model),可以直接将其放在任务B上做模型调整(称为fine-tuning)。

 

Reference

深度学习-六种权重初始化

一文详解深度学习参数初始化(weights initializer)策略

<think>嗯,用户想了解深度学习模型参数初始化方法。首先,我得回忆一下常见初始化方法有哪些,比如全零初始化、随机初始化、Xavier、He初始化这些。用户可能想知道为什么初始化重要,不同的方法有什么优缺点,以及如何在代码中实现。 首先,权重初始化的重要性应该先解释清楚。如果初始化不当,比如全零初始化会导致梯度消失,因为每个神经元的更新都一样,没有不对称性。这点需要提到,可能引用到用户提供的引用[1]和引用[4]。 接下来,可能需要分点介绍不同的方法。比如全零初始化的问题,然后是随机初始化的改进,但普通随机可能不够好,特别是对于深层网络。这时候就需要Xavier初始化,考虑输入输出的维度,保持方差一致。用户提到的引用[4]里有提到He初始化,适用于ReLU,所以得解释为什么ReLU需要不同的方法,比如因为激活函数的特性导致方差不同。 然后,He初始化是Xavier的变种,针对ReLU的,可能需要公式说明,比如方差为2/n。这部分需要确保LaTeX格式正确,用$$包围公式,行内用$符号。比如$W \sim \mathcal{N}(0, \sqrt{2/n_{in}})$,同时代码示例可能用PyTorch的init方法,如引用[2]中的例子。 另外,用户提供的引用[3]提到SGD的步骤,虽然和初始化关系不大,但可能在训练过程中参数更新相关,不过暂时可能不需要涉及。但需要确保引用的正确使用,比如在提到Xavier时引用[4],PyTorch实现引用[2]。 然后,正交初始化可能也需要解释,特别是对于RNN这类模型,防止梯度爆炸或消失。需要给出PyTorch的示例代码,比如nn.init.orthogonal_。 还需要注意用户提到的系统级指令,比如行内公式用$...$,独立公式用$$...$$,并且正确使用中文回答。生成相关问题部分要放在最后,可能需要包括初始化方法的选择、不同激活函数的影响、实验方法常见错误以及PyTorch的实现等。 最后,检查是否所有引用都正确对应,比如引用[1]提到权重初始化的重要性,引用[2]是PyTorch的初始化方法,引用[4]提到He初始化和激活函数的关系。确保每个引用在正确的位置,比如在解释全零初始化时引用[1],在代码示例时引用[2],在He初始化时引用[4]。 可能还需要考虑用户是初学者,所以语言要尽量清晰,避免过于技术化,同时覆盖主要方法,并给出代码示例帮助理解。比如,Xavier和He的区别,为什么ReLU需要不同的处理,这些可能需要用简单的例子说明。 总结步骤应该是:重要性、常见方法(分点详细说明,每个方法有公式、解释、代码)、选择建议,然后相关问题。确保每个部分符合用户的格式要求,正确使用引用和LaTeX。</think>以下是深度学习模型参数初始化方法的详细说明,包含公式、代码示例及实践建议: ### 一、权重初始化的重要性 1. 避免梯度消失/爆炸:合理的初始化能保持各层激活值的方差稳定,防止反向传播时梯度剧烈变化[^1] 2. 打破对称性:非零初始化可防止不同神经元学习相同特征 3. 加速收敛:良好的初始值可使损失函数处于更易优化的区域[^4] ### 二、常见初始化方法详解 #### 1. 全零初始化(不推荐) $$ W = 0 $$ * 问题:导致所有神经元输出相同,反向传播梯度一致,失去学习能力 * 仅适用于偏置(bias)初始化 #### 2. 随机初始化 (1) 均匀分布初始化: $$ W \sim U(-\sqrt{\frac{1}{n_{in}}}, \sqrt{\frac{1}{n_{in}}}) $$ ```python nn.init.uniform_(weight, -math.sqrt(1./n_in), math.sqrt(1./n_in)) # PyTorch实现[^2] ``` (2) 正态分布初始化: $$ W \sim \mathcal{N}(0, 0.01) $$ ```python nn.init.normal_(weight, 0, 0.01) ``` #### 3. Xavier/Glorot初始化 * 适用于tanh/sigmoid激活函数 * 考虑输入输出维度平衡: $$ W \sim U(-\sqrt{\frac{6}{n_{in} + n_{out}}}, \sqrt{\frac{6}{n_{in} + n_{out}}}) $$ ```python nn.init.xavier_uniform_(weight) # 均匀分布版本[^2] nn.init.xavier_normal_(weight) # 正态分布版本 ``` #### 4. He/Kaiming初始化 * 专为ReLU族激活函数设计 $$ W \sim \mathcal{N}(0, \sqrt{\frac{2}{n_{in}}}) $$ ```python nn.init.kaiming_normal_(weight, mode='fan_in', nonlinearity='relu') # PyTorch实现 ``` #### 5. 正交初始化 * 保持矩阵正交性,适用于RNN $$ W = Q,\quad QQ^T = I $$ ```python nn.init.orthogonal_(weight) ``` ### 三、初始化方法选择建议 | 激活函数 | 推荐初始化方法 | |----------------|---------------------| | Sigmoid/Tanh | Xavier/Glorot | | ReLU/LeakyReLU | He/Kaiming | | SELU | LeCun正态初始化 | | Linear | He均匀初始化 | ### 四、PyTorch初始化实践 ```python # 对全连接层初始化 def init_weights(m): if type(m) == nn.Linear: nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu') nn.init.constant_(m.bias, 0.01) model.apply(init_weights) # ``` ### 五、特殊场景处理 1. 残差网络:使用更小的初始化尺度(如He初始化×0.5) 2. Transformer:通常使用$xavier\_normal$初始化注意力参数 3. BatchNorm层:默认使用$(weight=1, bias=0)$初始化
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值