什么是Miniconda3
Miniconda3 是一个轻量级的 Python 环境管理工具,专注于提供高效的包管理和环境隔离功能。它具有以下主要用途:
- 创建独立的 Python 环境
Miniconda3 允许用户创建多个独立的 Python 虚拟环境,每个环境可以拥有独立的 Python 版本和库依赖。这使得不同项目之间的依赖关系互不干扰,有效避免了版本冲突。 - 灵活管理项目依赖
用户可以根据项目的具体需求,按需安装所需的 Python 包,而无需预装大量不必要的软件包。这种灵活性不仅节省了存储空间,还提高了开发效率。 - 支持多版本 Python
Miniconda3 支持安装和管理多个版本的 Python,方便开发者在不同项目中切换使用。这对于需要同时处理多个项目的开发者来说尤为重要。 - 跨平台兼容
Miniconda3 支持 Windows、macOS 和 Linux 等主流操作系统,为开发者提供了在不同平台上一致的开发体验。 - 轻量级安装
与 Anaconda 相比,Miniconda3 的安装包体积更小,安装过程更快速,适合那些需要快速部署 Python 环境但又不想安装完整版 Anaconda 的用户。 - 强大的包管理功能
Miniconda3 通过 Conda 提供了强大的包管理功能,可以轻松安装、更新和卸载 Python 包,同时自动解决依赖关系。
通过这些功能,Miniconda3 成为 Python 开发者管理项目依赖和环境的理想工具,尤其适合数据科学、机器学习和一般软件开发等领域
Miniconda、Anaconda、Conda和Pip之间的区别
- Pip
pip 是 Python 的默认包管理工具,用于安装和管理 Python 包。它专注于 Python 生态系统,仅支持 Python 包的安装和更新。pip 不具备环境管理功能,因此无法隔离不同项目的依赖关系。 - Conda
conda 是一个跨语言的包和环境管理工具,不仅支持 Python 包的安装和管理,还可以创建和隔离不同版本的 Python 环境。conda 的优势在于它能够处理复杂的依赖关系,并支持多种语言的包管理,而不仅仅是 Python。 - Anaconda
Anaconda 是一个包含丰富科学计算工具的发行版,预装了 conda、Python 以及 180 多个常用的科学计算包(如 NumPy、Pandas、Matplotlib 等)及其依赖项。它适合需要快速搭建完整科学计算环境的用户,但体积较大,可能包含一些用户并不需要的包。 - Miniconda
Miniconda 是 Anaconda 的轻量级版本,仅包含 conda 和 Python 的基本安装环境。它不预装额外的科学计算包,用户可以根据需要自行安装所需的包。Miniconda 的体积小、安装快速,适合需要灵活管理 Python 环境的开发者。
注意: Miniconda 的所有操作均通过命令行完成,没有图形界面(GUI)。相比之下,Anaconda 提供了图形化界面,适合对命令行操作不熟悉的用户。
安装Miniconda3
首先,从Miniconda3的官方网站下载适用于Windows的Miniconda3安装程序。建议使用镜像站点下载,例如清华大学镜像,速度比较快。点击下方链接,找到适合自己系统的安装包:
Miniconda3镜像
双击下载的安装程序,按照屏幕上的指示完成安装。在安装过程中,您可以选择安装路径和其他选项。本例安装的版本为 Miniconda3-py312_24.9.2-0-Windows-x86_64.exe
安装步骤
- 双击安装包(.exe 文件),点击 Next,进入到下一步。
- 点击 I Agree。
- 选择安装路径,注意不要有中文、空格之类的字符。
- 选择安装路径
- 点击 Install,等待安装完成。
安装完成后,打开命令提示符或Anaconda提示符,输入以下命令来验证Miniconda3是否成功安装:
conda --version
如果显示版本号,则表示安装成功。
配置环境变量
配置步骤
- 击电脑—> 属性—> 下滑找到“高级系统设置”。
- 点击“环境变量”。
- 在“系统变量”中找到 Path,点击“编辑”。
- 点击“新建”,分别添加以下路径(根据自己的安装路径修改):
- 点击“确定”,完成环境变量配置。
测试环境配置是否成功
按下 Win + R,输入 cmd,打开命令提示符,输入以下命令:
conda --version
如果显示版本号,则表示环境变量配置成功。
使用Miniconda3
列出常用命令
创建和管理环境
在使用Miniconda3时,您可以创建多个独立的Python环境,每个环境都可以包含不同的Python版本和软件包。以下是一些常用的conda环境管理命令:
- 创建一个新的环境:
conda create --name myenv
- 创建一个带有特定版本Python的新环境:
conda create --name myenv python=3.8
- 列出所有可用环境:
conda env list
- 激活一个环境:
conda activate myenv
- 退出当前环境:
conda deactivate
安装和管理软件包
conda允许您轻松地安装Python软件包和其他依赖项。以下是一些常用的conda软件包管理命令:
- 搜索可用的软件包:
conda search numpy
- 安装一个软件包:
conda install numpy
- 安装特定版本的软件包:
conda install numpy=1.19.5
- 更新一个软件包:
conda update numpy
- 删除一个软件包:
conda remove numpy
- 显示已安装的软件包:
conda list
其他常用命令
- 查看conda版本:
conda --version
- 显示conda帮助文档:
conda --help
- 创建conda配置文件:
conda config
国内镜像网站
以下是一些常用的Python镜像地址,按需使用:
- 阿里云镜像:https://mirrors.aliyun.com/pypi/simple/
- 清华大学镜像:https://pypi.tuna.tsinghua.edu.cn/simple/
- 豆瓣镜像:https://pypi.doubanio.com/simple/
- 中科大镜像:https://mirrors.ustc.edu.cn/pypi/web/simple/