pandas的DataFrame的append方法详细介绍

本文详细介绍了如何使用pandas DataFrame的append方法添加数据,包括添加字典、Series和列表。讨论了ignore_index、verify_integrity和sort参数的作用,并给出了处理不同数据结构时的注意事项和示例。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

官方文档介绍链接:append方法介绍

DataFrame.append(other, ignore_index=False, verify_integrity=False, sort=None)

功能说明:向dataframe对象中添加新的行,如果添加的列名不在dataframe对象中,将会被当作新的列进行添加

  • other:DataFrame、series、dict、list这样的数据结构
  • ignore_index:默认值为False,如果为True则不使用index标签
  • verify_integrity :默认值为False,如果为True当创建相同的index时会抛出ValueError的异常
  • sort:boolean,默认是None,该属性在pandas的0.23.0的版本才存在。
append添加字典
    import pandas as pd
    
    data = pd.DataFrame()
    a = {"x":1,"y":2}
    data = data.append(a,ignore_index=True)
    print(data)

在这里插入图片描述

append添加series

如果不添加ignore_index=True,会报错提示TypeError: Can only append a Series if ignore_index=True or if the Series has a name,如果不添加ignore_index=True,也可以改成以下代码

    import pandas as pd

    data = pd.DataFrame()
    series = pd.Series({"x":1,"y":2},name="a")
    data = data.append(series)
    print(data)

在这里插入图片描述
注意:当dataframe使用append方法添加series的时候,必须要设置name,设置name名称将会作为index的name。

append添加list
    data = pd.DataFrame()
    a = [1,2,3]
    data = data.append(a)
    print(data)

在这里插入图片描述
如果list是一维的,则是以列的形式来进行添加,如果list是二维的则是以行的形式进行添加的,如果是三维的则只添加一个值

    data = pd.DataFrame()
    a = [[[1,2,3]]]
    data = data.append(a)
    print(data)

在这里插入图片描述

注意:在多次使用append方法追加数据的时候,可能会出现相同的index

    data = pd.DataFrame()
    a = [[1,2,3],[4,5,6]]
    data = data.append(a)
    a = [[7,8,9],[10,11,12]]
    data = data.append(a)
    print(data)

在这里插入图片描述
如果想要添加的index不出现重复的情况,可以通过设置ignore_index=True来避免

    data = pd.DataFrame()
    a = [[1,2,3],[4,5,6]]
    data = data.append(a,ignore_index=True)
    a = [[7,8,9],[10,11,12]]
    data = data.append(a,ignore_index=True)
    print(data)

在这里插入图片描述

Pandas DataFrame 是一个二维表格数据结构,类似于 Excel 表格或 SQL 数据库中的表格,可以存储和处理各种类型的数据。DataFrame 由行和列组成,每一列可以存储不同类型的数据(如数值、字符串、布尔值等),每一行都有一个唯一的索引值。 下面是 Pandas DataFrame 的一些常用操作: 1. 创建 DataFrame 可以通过读取文件、从数据库中查询、从 Python 数据结构中创建等方式来创建 DataFrame。例如,从 Python 字典中创建 DataFrame: ```python import pandas as pd data = {'name': ['Alice', 'Bob', 'Charlie', 'David'], 'age': [25, 30, 35, 40], 'gender': ['F', 'M', 'M', 'M']} df = pd.DataFrame(data) ``` 2. 查看 DataFrame 可以使用 head()、tail()、info() 和 describe() 等方法来查看 DataFrame 的内容和结构。例如,使用 head() 方法查看前几行数据: ```python df.head() ``` 输出结果如下: ``` name age gender 0 Alice 25 F 1 Bob 30 M 2 Charlie 35 M 3 David 40 M ``` 3. 访问 DataFrame 可以使用 loc[] 和 iloc[] 属性来访问 DataFrame 中的数据。loc[] 属性可以通过行标签和列标签来访问数据,iloc[] 属性可以通过行索引和列索引来访问数据。例如,使用 loc[] 属性访问某一行数据: ```python df.loc[1] ``` 输出结果如下: ``` name Bob age 30 gender M Name: 1, dtype: object ``` 4. 修改 DataFrame 可以使用 loc[] 和 iloc[] 属性来修改 DataFrame 中的数据。例如,使用 loc[] 属性修改某一行数据: ```python df.loc[1, 'age'] = 31 ``` 5. 添加和删除行和列 可以使用 append() 方法添加新行,使用 drop() 方法删除行或列。例如,添加新行: ```python new_row = {'name': 'Emily', 'age': 25, 'gender': 'F'} df = df.append(new_row, ignore_index=True) ``` 删除某一列: ```python df.drop('gender', axis=1, inplace=True) ``` 6. 数据的统计和分组 可以使用 groupby() 方法DataFrame 进行分组,使用 sum()、mean()、count() 等方法对数据进行统计。例如,对 age 列进行分组并计算平均值: ```python df.groupby('age').mean() ``` 输出结果如下: ``` name age 25 Alice 30 Bob 31 Bob 35 Charlie 40 David ``` 以上是 Pandas DataFrame 的一些常用操作,还有很多其他的操作和方法可以使用,可以根据具体需求进行学习和使用。
评论 7
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

修炼之路

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值