分治法求解最大子数组问题

本文介绍了如何利用分治法解决寻找数组中最大子数组和的问题。通过将数组划分为两部分,分析完全位于左侧、右侧或跨越中间点的情况来找到最大子数组。并提供了相应的伪代码和C++代码实现。
摘要由CSDN通过智能技术生成

最大字数组问题即对某一数组A,其元素有正有负,找到一个子数组,其元素是连续的且其和最大。

如图数组A:


其最大字数组为A[7..10],即A[7]+A[8]+...+A[10]=43是数组A连续元素中最大值。

我们用分治法求解:

假设我们要寻找数组A[low...high]的最大子数组,使用分治法意味着我们要将数组划分成两个规模尽量相等的子数组。也就是说找到数组的中间位置mid,然后考虑A[low...mid]和A[mid+1...high],A[low...high]的最大子数组A[i...j]必然是一下三种情况之一:

             完全位于A[low...mid]中,即low<=i<=j<=mid;

            完全位于A[mid+1...high]中,即mid+1<=i<=j<=high;

            跨越了中点,因此low<=i<=mid<j<=high;


伪代码:



C+

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值