Linear Algebra L2 2020.09.09

线性代数L2:高斯消元与矩阵求解
这篇博客介绍了线性代数中的系统求解方法,包括行阶梯形矩阵、高斯消元法和高斯-约旦消元法。讲解了如何通过前向和后向替换解决方程组,并阐述了非零行、主元素等概念,以及解的可能情况。还探讨了齐次系统的性质和解的情况。

Linear Algebra L2

Knowledge structure

  • Solving n × n Systems
  • Row-Echelon Form
  • Gaussian Elimination
  • Gauss-Jordan Elimination

Solving n × n Systems
Forward substitution:
– Use the x1x_1x1 term in the first equation to eliminate the x1x_1x1 terms in the other equations. Do the same operation to x2x_2x2 term and so on.
Our goal is to get a upper triangle matrix like:
[2−23−2101−2320043300044]\begin{bmatrix} 2&-2&3&-2&1\\0&1&-2&3&2\\0&0&4&3&3\\0&0&0&4&4\end{bmatrix}20002100324023341234

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值