MAT2006
文章平均质量分 78
mat菜鸡
这个作者很懒,什么都没留下…
展开
-
L5 Limits and Continuity
极限与连续——重返高等数学我们回顾一下经典的狄利克雷函数如果我们以有理数Xn逼近1,g(x)一直等于1;以无理数Xn逼近1,g(x)一直等于0——所以我们在x=1没有极限那我们变一变整点新活显然在x不等于0时hx不连续。但是!!!!他在x=0竟然是!连续的!用定义来看确实是如此,不论以有理还是无理数逼近0,我们都有lim=0你以为整活就到此为止了吗?nonono我们拿有理数逼近2举例,会发现如果我们越接近2,容许的差越小,m/n中的n也就要更大(否则没办法变得更精细),所以就接近0了。这原创 2021-06-08 17:23:07 · 226 阅读 · 0 评论 -
L4 Basic Topology of R
实数的基础拓扑思考:康托集若C0是闭集[0,1],C1=[0,1/3]u[2/3,1],从每一个区间里删去中间的三分之一个开集,重复,我们得到康托集最后剩下的都是点(哪些点会留下?想一想~)我们假设集有长度,如[0,1]长度是1,则康托集的长度为0(不断地乘2/3),跟一个点没差(具体的就是测度啦,不过挺复杂的)所以没有内点(内点,也就是里面的点,有兴趣可以查定义)小答案:康托集是每个1/3集端点的集合康托集是完备集,即perfect set(perfect的S定义,S=S’,S’ 是所有 S原创 2021-06-07 12:28:27 · 799 阅读 · 0 评论 -
L3 Series
级数级数是一种和,所以一般用sum来表示简称sSn=a1+a2+a3+a4+…+an,{an}也是数列这样Sn会形成一个数列,可能收敛,可能发散,这个数列我们就叫级数(Infinite Series)3个定理 级数服从线性 cA A+B柯西收敛条件:级数收敛<=>|a{m+1}+a{m+2}+…+a{n}|<e,N<=m<n收敛的必要条件:级数收敛=>Ak—>0收敛判别比较法 两个级数sum Ak 、sum BkAk<Bk,Ak发散则Bk发散原创 2021-06-04 15:03:29 · 198 阅读 · 0 评论 -
L3 Sequence
导言众所周知,一个无穷数列(sequence,定义就是无穷项的)的排序十分讲究,比如1-1+1-1+1…不能这样去算:(1-1)+(1-1)+…=0,这种算法很明显错的(不代表所有数列都不满足交换),但是为什么呢?本章就试图用严格的定义去理解无穷数列。数列的极限数列是什么?a1, a2, a3,…实际上,自变量就是这个下标,所以这么理解:数列就是正整数N—>R的函数f, an=f(n)在开始之前我们必须明白一件事情,对于这样一个普通的数列来说,从哪里开始(1,4,10000等等)开始并不重要,原创 2021-06-03 17:38:38 · 219 阅读 · 0 评论 -
L2 Real Number 2020.09.07
1 Algebraic Properties of Real numbersQ-Addition Q0-multiplicationOrder: Total order has connexity(三岐性)2 AoCLeast Upper BoundUB: For all a∈A,b>=a,then b is an ubFor \ all\ a\in A, b>=a, then\ b\ is\ an\ ubFor&n原创 2021-06-02 17:13:48 · 127 阅读 · 0 评论 -
L1 Preliminary 2020.09.07
Elementary Real Analysis L1The difference between the calculus and real analysis is one only requires using and know how to solve problems by calculus, while the other need you know why one can use it.There are some example for wrongly using theorems:原创 2020-09-07 21:49:52 · 127 阅读 · 0 评论