L2 Real Number 2020.09.07

1 Algebraic Properties of Real numbers

Q-Addition Q0-multiplication
Order: Total order has connexity(三岐性)

2 AoC

aoc: Every nonempty set of real numbers that is bounded above has a least upper bound.
每一个上限非空集一定存在上确界。

看似简单的一条,其实正是Q和R的一个重要区别,我们可以举出一个Q有上确界的反例,即x1 = x0/2 + 1/x0, x1<x0, x1^2>2,xn始终为上界,但始终能找到一个更小的上界

Least Upper Bound 下界也是一样的!
UB: F o r   a l l   a ∈ A , b > = a , t h e n   b   i s   a n   u b For \ all\ a\in A, b>=a, then\ b\ is\ an\ ub For all aA,b>=a,then b is an ub LUB: s is b, s<=b for all b
对于任意A中的元素a,若b始终>=a,则b为一个上界。
对于任意的上界b,若s始终<=b,则s为一个上确界

一个性质引理:s = sup A if and only
if, for every choice of e > 0, there exists an element a ∈ A satisfying s - e< a

戴德金切割
A与B交于空,A与B合于R,a<b恒成立,则存在一个c使得c>=a and c<=b
此定理等价于AoC

完备性定理说明了什么?
既然我们了解到了实数集的完备性定理,那么我们很自然地想到:完备性会带来哪一些有用的性质

Nested Interval Property区间套定理(I皆为空集)
I1包I2包I3… I1交I2交I3…不为空集

Q如何扩展到R的?
阿基米德定理:总有更大的,总有更小的
对于实数a,b; a<b, 存在有理数q使得 a<q<b

可数不可数集
可数的定义:N能不能1-1对应,由于对应总是无限的,所以理解会有困难
Q可数,R不可数
Q可数就用分子分母是整数来扩展没有什么问题
R的不可数有两种证明方法
1区间套,假设R可数则可以用{x1,x2,x3…}来遍历R中的每一个元素,我们搞一个区间套(I1 I2 I3…)让In不包含xn,则这个区间套交于空集,与我们的定理不符,所以实数是不可数的
反过来看,区间套的操作是对可数无穷个集进行交,自然无法处理不可数的实数集

Schroder–Bernstein Theorem
这是一个非常神奇的定理,看着简单其实很难解释
一种很直觉的解释是A B势的大小判断出等势
引用知乎上一个回答,但大概率看了也看不懂
伯恩斯坦的单向婚姻

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值