无限可能LangChain——概念指南之架构

本节包含对 LangChain 关键部分的介绍。

架构

LangChain 作为一个框架由多个包组成。

langchain-core

该包包含不同组件的基本抽象以及将它们组合在一起的方法。此处定义了LLM、向量存储、检索器等核心组件的接口。这里没有定义第三方集成。依赖项有目的地保持非常轻量级。

LangChain Core 包含为 LangChain 生态系统的其余部分提供基础的抽象。拥有这些抽象的好处是任何提供商都可以实现所需的接口,然后轻松地在 LangChain 生态系统的其余部分中使用。

快速安装
pip install langchain-core
核心接口:可运行文件

Runnable的概念是 LangChain Core 的核心——它是大多数 LangChain Core 组件实现的接口,为它们提供了

  • 一个通用的调用接口(调用、批处理、流等)
  • 用于重试、回退、模式和运行时可配置性的内置实用程序
  • 使用 LangServe 轻松部署

如需更多信息,请查看可运行文档。实现接口的组件示例包括:LLM、聊天模型、提示、检索器、工具、输出解析器。

我们可以通过两种方式使用 LangChain Core 对象:

  • 命令式:即。直接调用它们,例如:model.invoke(...)
  • 声明式,带有LangChain表达式语言(LCEL)
  • 或者两者兼而有之!例如:LCEL 序列中的一个步骤可以是自定义函数。

合作包

当整合的长尾在 langchain-community,我们将流行的集成拆分为它们自己的包(例如:langchain-openailangchain-anthropic

### 关于 LangChain 的教程与入门指南 LangChain 是一种强大的自然语言处理工具链,旨在帮助开发者构建由语言模型驱动的应用程序。以下是关于 LangChain 的一些关键知识点以及如何快速上手的指导。 #### 1. **LangChain 基础** LangChain 提供了一套完整的框架来支持 NLP 应用开发。其基础架构围绕三个主要组件展开:LLM(大型语言模型)、提示模板(Prompt Templates),以及 LangChain 自身的功能模块[^3]。理解这三个部分对于初学者至关重要: - **LLM (Large Language Model)** 这是整个系统的基石,负责生成基于上下文的内容。你可以选择不同的预训练模型并将其集成到 LangChain 中。 - **提示模板 (Prompt Templates)** 提示模板用于结构化输入数据,以便更好地引导 LLM 输出预期的结果。合理设计提示可以显著提升性能和效果。 - **LangChain 功能模块** 它封装了许多实用功能,比如链式操作、记忆管理等,从而简化复杂流程的设计。 #### 2. **创建简单链条** 为了熟悉 LangChain 的工作方式,可以从最简单的例子入手——创建一条基本链条。下面是一个典型的实现案例[^4]: ```python from langchain.llms import OpenAI from langchain.prompts import PromptTemplate from langchain.chains import LLMChain # 初始化 LLM 和提示模板 llm = OpenAI(temperature=0.7) prompt_template = "What is a good name for a company that makes {product}?" prompt = PromptTemplate(input_variables=["product"], template=prompt_template) # 创建链条 chain = LLMChain(llm=llm, prompt=prompt) # 执行链条 result = chain.run(product="eco-friendly water bottles") print(result) ``` 此代码展示了如何利用 `LLMChain` 将用户输入转化为经过格式化的提示,并传递给指定的语言模型进行推理。 #### 3. **进一步学习方向** 除了上述基础知识外,还可以继续探索以下几个方面以深化技能水平[^1][^2]: - **高级特性**: 掌握诸如多步对话逻辑、外部工具调用等功能。 - **优化策略**: 学习调整超参数、改进提示工程技巧等方式提高效率。 - **实际项目实践**: 结合具体业务场景尝试搭建真实可用的产品原型。 --- ###
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值