SVM



1.loss function

红色这条线就是Square Loss的表现,与黑色的理想loss曲线比较,当x很大是,将会取得很大的值,这是不合理的,既然如此,我们再试一下Square Loss+cross entropy。

蓝色这条线就是Sigmoid+Square loss,但是实际上,Square的performance并不好,用cross entropy更合理,就是绿色那条线,当横坐标趋近无穷大时,趋近于0,如果负无穷,则会无穷大。比较一下蓝绿两条线,如果我们横坐标,从-2移到-1,绿色这条线变化很大,蓝色反之,造成的效果就是,横坐标非常negative时,绿色调整参数可以取得较好的回报,所以它很乐意把negative的值变大,而蓝色反之,很懒惰。

如果比较紫绿两条线,它们最大的不同就是对待做得好的example的态度,如果把横坐标从1挪到2,对绿色来说它会有动机把横坐标变得更大,而紫色对此的态度是及格就好,不会再努力变大。



2.LinearSVM

2.1. Hinge Loss

SVM通常不用gradient descent做,但也是可以做的




2.2 Kernel trick




评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值