回溯法解题思路:
(1)针对所给问题,定义问题的解空间;
(2)确定易于搜索的解空间结构;
(3)以深度优先方式搜索解空间,并在搜索过程中用剪枝函数避免无效搜索。
八皇后问题:
八皇后问题,是一个古老而著名的问题,是回溯算法的典型案例。该问题是国际西洋棋棋手马克斯·贝瑟尔于1848年提出:在8×8格的国际象棋上摆放八个皇后,使其不能互相攻击,即任意两个皇后都不能处于同一行、同一列或同一斜线上,问有多少种摆法。
图解回溯法解八皇后问题:
回溯法解N皇后问题
1、使用一个一维数组表示皇后的位置,
其中数组的下标表示皇后所在的行,
数组元素的值表示皇后所在的列。
2、假设前n-1行的皇后已经按照规则排列好,
那么可以使用回溯法逐个试出第n行皇后的合法位置,
所有皇后的初始位置都是第0列,
那么逐个尝试就是从0试到N-1,
如果达到N,仍未找到合法位置,
那么就置当前行的皇后的位置为初始位置0,
然后回退一行,且该行的皇后的位置加1,继续尝试,
如果目前处于第0行,还要再回退,说明此问题已再无解。
3、如果当前行的皇后的位置还是在0到N-1的合法范围内,
那么首先要判断该行的皇后是否与前几行的皇后互相冲突,
如果冲突,该行的皇后的位置加1,继续尝试,
如果不冲突,判断下一行的皇后,
如果已经是最后一行,说明已经找到一个解,输出这个解,
然后最后一行的皇后的位置加1,继续尝试下一个解。
完整代码:
#include <iostream>
#include <cstdlib>
using namespace std;
bool place(int *a, int k)
{
for(int i = 0; i < k; ++i)
{
if(abs(k - i) == abs(a[k] - a[i]) || a[k] == a[i])
return false;
}
return true;
}
int Backtrack(int sum, int num, int *a)
{
int i = 0;
while(1)
{
if(a[i] < num)
{
if(!place(a,i))
{
a[i]++;
continue;
}
if(i >= num - 1)
{
sum++;
a[num - 1]++;
continue;
}
i++;
continue;
}
else
{
a[i] = 0;
i--;
if(i < 0)
return sum;
a[i]++;
continue;
}
}
}
int main(int argc, char const* argv[])
{
int sum = 0;
int num = 0;
cout << "input the number of queens" << endl;
cin >> num;
if(num < 4 && num != 1)
{
cout << "no sulution" << endl;
return 0;
}
int *array = (int *)malloc(sizeof(int) * num);
for(int i = 0; i < num; ++i)
{
array[i] = 0;
}
cout << Backtrack(sum, num, array) << endl;
return 0;
}