Leetcode 962. 最大宽度坡 java&python

给定一个整数数组 A是元组 (i, j),其中  i < j 且 A[i] <= A[j]。这样的坡的宽度为 j - i

找出 A 中的坡的最大宽度,如果不存在,返回 0 。

 

示例 1:

输入:[6,0,8,2,1,5]
输出:4
解释:
最大宽度的坡为 (i, j) = (1, 5): A[1] = 0 且 A[5] = 5.

示例 2:

输入:[9,8,1,0,1,9,4,0,4,1]
输出:7
解释:
最大宽度的坡为 (i, j) = (2, 9): A[2] = 1 且 A[9] = 1.

 

提示:

  1. 2 <= A.length <= 50000
  2. 0 <= A[i] <= 50000

看到这道题目,首先想到的方法是记忆化搜索,用递归的方法去寻找最大的坡度

    private int[][] memo;

    public int maxWidthRamp(int[] A) {
        memo = new int[A.length][A.length];
        return getMax(A, 0, A.length - 1);
    }

    private int getMax(int[] A, int left, int right) {
        if (left >= right) {
            return 0;
        }
        if (A[left] <= A[right]) {
            return right - left;
        }

        if (memo[left][right] != 0) {
            return memo[left][right];
        }

        memo[left][right] = Math.max(getMax(A, left + 1, right), getMax(A, left, right - 1));

        return memo[left][right];
    }

然鹅超出了内存限制..

改用滑动模块的方式,从最大长度依次减1去寻找

public int maxWidthRamp(int[] A) {
        int i = A.length - 1;
        while (i > 0) {
            int left = 0;
            int right = i;

            while (right < A.length) {
                if (A[left] <= A[right]) {
                    return right - left;
                } else {
                    left++;
                    right++;
                }
            }

            i--;
        }

        return 0;
    }

然鹅超时..

改用单调栈

public int maxWidthRamp(int[] A) {
        Stack<Integer> stack = new Stack<>();

        int res = 0, n = A.length;

        for (int i = 1; i < n; i++) {
            if (stack.isEmpty() || A[stack.peek()] > A[i]) {
                stack.push(i);
            }
        }

        for (int i = n - 1; i >= res; i--) {
            while (!stack.isEmpty() && A[stack.peek()] <= A[i]) {
                res = Math.max(res, i - stack.peek());
                stack.pop();
            }
        }

        return res;
    }

AC,100%

python版本

def maxWidthRamp(self, A):
        stack = []
        res = 0
        for i in range(len(A))[::-1]:
            if not stack or A[i] > stack[-1][0]:
                stack.append([A[i], i])
            else:
                j = stack[bisect.bisect(stack, [A[i], i])][1]
                res = max(res, j - i)
        return res

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值