谷歌ADKagent框架以及MCP协议

*大家好,我是AI拉呱,一个专注于人工智领域与网络安全方面的博主,现任资深算法研究员一职,热爱机器学习和深度学习算法应用,拥有丰富的AI项目经验,希望和你一起成长交流。关注AI拉呱一起学习更多AI知识。

adk-python

代码地址:https://github.com/google/adk-python
说明地址: https://google.github.io/adk-docs/

智能体开发工具包(ADK)是一个灵活的模块化框架,用于开发和部署人工智能体。ADK 可与流行的大语言模型和开源生成式人工智能工具一起使用,并且设计重点在于与谷歌生态系统和 Gemini 模型紧密集成。ADK 使得使用由 Gemini 模型和谷歌人工智能工具驱动的简单智能体轻松上手,同时为更复杂的智能体架构和编排提供所需的控制和结构。

特点

  1. 灵活编排:使用工作流代理(Sequential、Parallel、Loop)为可预测的管道定义工作流,或利用LLM驱动的动态路由(LlmAgent传输)进行自适应行为。
  2. 多Agent框架:序列代理,循环代理,平行代理
    HT7NG8
  3. 大语言模型支持gemini和OpenAIAPi格式
  4. 集成了多种工具(内置了很多工具:Google搜索/代码执行,RAG检测):尤其在推理和工具选择准确率
<think>好的,我需要回答用户关于MCP协议在IT领域的用途及实现的问题。首先,我需要明确用户提到的MCP具体指的是哪个协议,因为可能有多个缩写为MCP的术语。根据用户提供的引用内容,有三个来源: 引用[1]提到了MCP(Model Context Protocol),作为AI与外部工具和数据交互的标准,并提到附录中的MCP Server开发实践。引用[2]同样解释了MCP是Model Context Protocol,用于AI交互。引用[3]提到了Burroughs MCP,这是与Unisys Clearpath相关的一个操作系统,属于历史系统。 用户的问题集中在IT领域,因此需要区分这两种不同的MCP。根据引用[1]和[2],重点应该是Model Context Protocol,而引用[3]中的Burroughs MCP可能不是用户关注的重点,但为了全面性,可能需要简要提及。 接下来,我需要整理MCP(Model Context Protocol)的用途和实现。用途方面,需要说明其在AI与外部工具和数据交互中的作用,如标准化接口、模型管理、上下文感知等。实现部分需要参考附录中的开发实践,可能涉及通信协议设计、API网关、上下文管理模块等组件。 同时,需要确保回答结构清晰,分点说明用途和实现,并生成相关问题。还要注意引用标记的正确使用,例如在提到标准化接口时引用[^1]和[^2]。 另外,用户可能混淆了不同MCP,因此需要明确区分Model Context Protocol和Burroughs MCP,但根据引用内容,用户更可能关注前者。最后,生成的相关问题应围绕MCP协议的应用、技术挑战、与其他协议的区别,以及历史背景如Burroughs MCP。 需要验证信息是否准确,尤其是引用来源中的内容是否支持所述用途和实现。例如,引用[1]提到附录的开发实践,可能涉及服务器实现,因此可以推测MCP的实现包括服务器端组件、API设计等。 总结回答结构:先介绍MCP的定义,分点用途,分点实现,区分不同MCP,生成相关问题。</think>### MCP协议在IT领域的用途及实现 MCP(Model Context Protocol)是一种用于AI系统与外部工具、数据源进行标准化交互的协议,尤其在模型上下文管理方面发挥关键作用。以下是其核心用途及实现方式: --- #### 一、MCP协议的主要用途 1. **标准化AI与外部工具的交互** MCP定义了AI模型调用外部工具(如数据库、API、硬件设备)的统一接口,例如通过RESTful API或gRPC实现服务注册与调用[^2]。 2. **动态上下文管理** 支持运行时上下文(如用户输入、环境参数、历史交互记录)的传递与更新,增强AI模型的场景适应能力。 3. **模型生命周期管理** 提供模型加载、版本控制、资源分配等功能,简化多模型协同工作的复杂度。 4. **安全与权限控制** 通过身份验证和访问控制策略(如OAuth 2.0),确保外部工具和数据调用的合规性。 --- #### 二、MCP协议的典型实现 1. **通信协议设计** 基于HTTP/2或WebSocket实现高效数据传输,协议消息格式通常采用JSON或Protocol Buffers[^1]。 2. **核心组件** - **API网关**:负责路由请求、负载均衡和协议转换(如将MCP请求转换为数据库查询语句)。 - **上下文管理器**:维护会话状态,例如使用Redis存储实时上下文数据。 - **模型执行引擎**:调度AI模型运行,支持TensorFlow、PyTorch等框架的集成。 3. **开发实践示例** ```python # MCP Server 示例(简化) from flask import Flask, request app = Flask(__name__) @app.route('/execute', methods=['POST']) def handle_mcp_request(): context = request.json.get('context') tool_id = request.json.get('tool_id') # 调用外部工具并返回结果 result = external_tool_invoke(tool_id, context) return {'status': 'success', 'data': result} ``` --- #### 三、其他MCP相关概念 - **Burroughs MCP**:历史上由Unisix开发的**操作系统级MCP**(Master Control Program),专注于事务处理和大型机资源管理[^3],与AI协议无关。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值