深度剖析勒索软件检测技术:基于行为特征的创新之路

*大家好,我是AI拉呱,一个专注于人工智领域与网络安全方面的博主,现任资深算法研究员一职,热爱机器学习和深度学习算法应用,拥有丰富的AI项目经验,希望和你一起成长交流。关注AI拉呱一起学习更多AI知识。

在网络安全领域,勒索软件一直是令人头疼的难题,它就像隐藏在暗处的“数字劫匪”,给个人和组织带来巨大损失。今天,我们就通过《基于行为特征的勒索软件分析与检测》这篇论文,深入了解如何从行为特征入手,有效检测和防范勒索软件。
CKPf49

勒索软件:日益严峻的网络威胁

随着计算机和网络技术的发展,人们对数字工具的依赖程度越来越高,这也为勒索软件的滋生提供了温床。勒索软件作为恶意软件的一种,主要通过加密用户文件或锁定系统,迫使受害者支付赎金来恢复访问权限。它的危害不仅体现在直接的经济损失上,还会导致数据丢失、业务中断,对企业的信誉和社会的信任体系造成严重冲击。
pOYqOO

回顾勒索软件的发展历程,它经历了多个阶段的演变。早期的勒索软件相对简单,大多是锁屏程序,通过吓唬用户来获取赎金。但随着技术的进步,加密勒索软件开始出现,利用先进的加密技术锁定用户文件,让数据恢复变得极为困难。比特币等加密货币的兴起,更是为勒索软件攻击者提供了匿名且难以追踪的支付方式,使得勒索软件攻击愈发猖獗。近年来,勒索软件的攻击策略不断升级,出现了针对性攻击,专门瞄准对数据依赖度高的行业和组织,如医疗机构、政府机构和大型企业,索要高额赎金。同时,智能化和自动化也成为其发展趋势,能够自动识别目标系统的脆弱点,发起更精准的攻击。

现有检测方法的困境

为了应对勒索软件的威胁,研究人员开发了多种检测方法,主要分为基于静态特征和基于动态特征两大类。

基于静态特征的检测方法,是在不运行程序的情况下,分析程序文件的字节序列、操作码等静态属性。例如,有的系统会提取程序的字节序列和操作码,输入到机器学习模型中进行检测;还有的将程序二进制文件转换为图像,利用卷积神经网络进行分类。这种方法的优点是检测速度快,但它的局限性也很明显。一方面,并非所有勒索软件都有可供静态分析的可执行文件留在系统中;另一方面,当勒索软件采用代码混淆或加壳技术时,提取静态特征变得异常困难,导致检测失效。

基于动态特征的检测方法,则是通过实时监控样本的运行痕迹来识别异常行为,包括文件系统行为和网络行为。在文件系统行为检测方面,有的方法通过分析文件熵来区分加密和未加密文件,有的利用机器学习模型分析文件系统访问数据,还有的通过收集API序列数据集进行检测。在网络行为检测方面,主要依赖分析与命令控制服务器通信产生的网络流量,利用机器学习模型搜索流量中的异常行为模式。然而,这类方法也面临诸多挑战。比如,在文件系统检测中,难以区分勒索软件的加密行为和用户的正常加密操作;在网络行为检测中,暗网中的模糊网络协议增加了检测难度,而且检测过程往往需要消耗大量系统资源,检测时间较长。
l601Sz

创新检测方法:CLDFE与ML-LDNB

针对现有检测方法的不足,论文提出了两种创新的检测方法:综合本地动态行为和文件熵的勒索软件检测方法(CLDFE),以及综合本地动态行为和网络行为的机器学习勒索软件检测方法(ML-LDNB)。
oaitv8
CLDFE方法的核心在于对勒索软件本地动态行为和文件熵变化的深入分析。文件熵和文件签名是该方法的两个重要判断指标。正常文件的熵值通常在4.5左右,而被勒索软件加密的文件熵值往往超过7,这种显著变化为检测提供了量化依据。同时,勒索软件加密文件时会改变文件签名,这也成为检测的重要线索。此外,勒索软件在运行过程中会有一系列异常行为。在API调用方面,它会使用大量标准Windows API,如在文件加密、系统信息收集、注册表修改等操作时调用特定的API。在注册表键值操作上,会进行打开、写入、读取和删除等操作,以实现自启动、隐藏踪迹、收集信息等目的。还有删除文件扩展名、频繁进行文件操作和目录操作等行为,都为检测提供了重要线索。

CLDFE检测结构由两部分组成。第一部分是基于机器学习的本地动态行为特征检测结构,通过在Cuckoo沙箱中运行样本,提取API调用、注册表键操作等特征,利用Select KBest方法筛选特征,再使用逻辑回归算法构建分类器进行初步判断。第二部分是文件熵检测结构,当逻辑回归分类器无法确定时,通过监控文件熵值并与阈值比较,结合文件签名验证,进一步判断是否为勒索软件。如果判定为勒索软件,系统会自动启动备份过程,保护用户数据。

ML-LDNB方法则是在CLDFE的基础上,进一步考虑了勒索软件的网络行为。勒索软件的网络行为复杂多样,包括与远程控制和命令控制服务器建立连接、利用域生成算法动态生成域名、扫描网络漏洞进行传播、通过匿名网络服务通信以及涉及赎金支付的相关通信等。

ML-LDNB检测结构由本地动态行为特征分类模块、网络行为特征分类模块和决策模块组成。本地动态行为特征分类模块与CLDFE中的本地动态行为特征检测结构类似,负责提取和分析本地动态行为特征。网络行为特征分类模块从Cuckoo沙箱捕获的网络流量中提取特征,如DNS连接的IP数量、SMB端口的使用情况、TCP/IP协议中的连接特征等,使用决策树算法构建分类器进行预判。决策模块则接收两个分类模块的预判结果,通过投票算法综合判断样本是否为勒索软件。
y4MMNE

实验验证:新方法的有效性

为了验证这两种检测方法的有效性,论文进行了详细的实验。在CLDFE方法的实验中,搭建了模拟真实使用环境的实验环境,收集了多种类型的文件和常用应用程序,数据集包含580个勒索软件样本和944个普通软件样本。实验结果显示,基于逻辑回归算法的分类器准确率达到了98.03%,文件熵检测结构有效地弥补了本地动态行为特征检测结构可能出现的漏检情况,能够准确区分勒索软件的加密行为和普通软件的正常行为,并实现数据备份与恢复。
Fl36HG
在ML-LDNB方法的实验中,同样构建了模拟环境,收集了勒索软件样本的网络通信数据。实验数据集包含539个勒索软件样本和502个普通软件样本。通过对网络行为特征分类器(NBFC)的实验,发现调整参数后的决策树算法在检测勒索软件时表现优异,平均准确率达到98%。整体的ML-LDNB检测方法在新构建的数据集中准确率也达到了98%,相比其他对比方法,有1%左右的提升,证明了该方法的可靠性和高效性。
ab3VZ7

展望未来:持续探索与改进

尽管论文提出的两种检测方法在勒索软件检测方面取得了显著成果,但勒索软件的攻击手段不断变化,未来的研究仍面临诸多挑战。一方面,勒索软件的攻击不再局限于Windows平台,Mac OS、Linux系统以及移动设备也成为了攻击目标,因此需要将研究扩展到不同系统,深入分析不同平台上勒索软件的动态行为特征。另一方面,目前的检测方法仅区分了勒索软件和普通软件,未来可以专注于收集更多勒索软件行为数据,进一步区分不同的勒索软件家族,实现更精准的检测和防范。

《基于行为特征的勒索软件分析与检测》这篇论文为我们提供了对抗勒索软件的新思路和新方法。通过对勒索软件行为特征的深入挖掘,结合先进的机器学习技术,我们在勒索软件检测领域取得了重要进展。但我们也要清醒地认识到,网络安全是一场持续的较量,需要不断探索和创新,才能在这场数字战争中取得胜利,保护我们的数字世界安全。

关注“AI拉呱公众号”一起学习更多AI知识!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值