用pandas轻松搞定数据探索性分析(pandas参数、pandas风格、pandas-profiling)

对于每个从事和数据科学有关的人来说,大部分的时间都花在了前期的数据工作中,包括清洗、处理、探索性数据分析等。前期的工作不仅关乎数据的质量,也关乎最终模型预测效果的好坏。本文介绍一些比较冷门但效果不错的pandas方法来对数据进行初步探索,已经最后介绍一个非常方便实用的库pandas-profiling。

import pandas as pd
import numpy as np

展示全部特征列 

data = pd.read_csv('loans_2020.csv')
data.head()

首先我们看到,对于一些比较大型的数据集导入时,会像上图这样将特征缩略,不能很好地直观看到所有的特征,那么此时可以将pandas的设置更改一下:

pd.set_option('display.max_columns', None)
data.head()

其中None可以改为你想要展示的具体最大列数。

展示单元格的全部内容

data1 = pd.DataFrame({'name': ['O'*80, 'X'*80]})
data1

像上图中如果一个单元格内的内容太多可能会缩略掉,若想展示全部内容的话也可以通过pandas设置来改变:

pd.set_
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值