最近开始学习推荐系统,特记录一下学习过程并做个分享。
推荐系统是什么不用多说,这里先介绍一下推荐系统的各种评测指标。
1、用户满意度
这个指标应该是最能体现一个推荐系统好坏的指标,但获取只能通过用户在线的反馈,类似用户问卷调查,或者用户对推荐物品的行为,比如购买、收藏、评分等判别。
2、预测准确度
在离线预测用户行为的评价上,这个指标相当重要。在统计学习中,也就是根据训练数据集学习得到的系统对测试数据集的预测准确度,既泛化能力。
推荐系统在这主要分为两个方面,评分预测与TopN预测。
(1)评分预测:类似豆瓣电影的评分,预测用户对推荐的某一物品的评分从而达到选择最优推荐的目的。而评价评分预测准确度的方法,一般有两种:
RMSE(均方根偏差)和MAE(平均绝对偏差)
(2)TopN预测:类似热门推荐,推荐N个商品给用户。评价这个指标的方法,一般也为两种