推荐系统学习之评测指标

本文介绍了推荐系统的评测指标,包括用户满意度、预测准确度(评分预测与TopN预测)、覆盖率、多样性、新颖性、惊喜度、信任度和实时性,以及健壮性,帮助理解推荐系统性能的关键衡量标准。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

最近开始学习推荐系统,特记录一下学习过程并做个分享。

推荐系统是什么不用多说,这里先介绍一下推荐系统的各种评测指标。

1、用户满意度

这个指标应该是最能体现一个推荐系统好坏的指标,但获取只能通过用户在线的反馈,类似用户问卷调查,或者用户对推荐物品的行为,比如购买、收藏、评分等判别。

2、预测准确度

在离线预测用户行为的评价上,这个指标相当重要。在统计学习中,也就是根据训练数据集学习得到的系统对测试数据集的预测准确度,既泛化能力。

推荐系统在这主要分为两个方面,评分预测与TopN预测。

(1)评分预测:类似豆瓣电影的评分,预测用户对推荐的某一物品的评分从而达到选择最优推荐的目的。而评价评分预测准确度的方法,一般有两种:

RMSE(均方根偏差)和MAE(平均绝对偏差)

(2)TopN预测:类似热门推荐,推荐N个商品给用户。评价这个指标的方法,一般也为两种

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值