tensorflow
十里清风
星光不问赶路人,岁月不负有心人
展开
-
生成对抗网络(Generative Adversarial Nets, GANs)
GANs生成器generator和判别器discriminator均使用多层感知机。定义输入噪声先验分布pz(z)p_z(z)pz(z),生成器Gz(z;θg)G_z(z;\theta_g)Gz(z;θg)将其映射至真实数据分布。判别器D(x;θd)D(x;\theta_d)D(x;θd)输出标量,表示数据来自于真实分布的概率。训练判别器,使之尽可能区分输入来自于真实样本还是生成器生成样本;训练生成器,尽可能使判别器对其输出认为是来自于真实样本。因此,生成器和判别器互相对抗,优化判别器降原创 2020-06-24 00:43:59 · 647 阅读 · 0 评论 -
Attention机制(Bahdanau attention & Luong Attention)
传统seq2seq模型中encoder将输入序列编码成一个context向量,decoder将context向量作为初始隐状态,生成目标序列。随着输入序列长度的增加,编码器难以将所有输入信息编码为单一context向量,编码信息缺失,难以完成高质量的解码。注意力机制是在每个时刻解码时,基于当前时刻解码器的隐状态、输入或输出等信息,计算其对输入序列各位置隐状态的注意力(分数)并加权生成context向量用于当前时刻解码。引入注意力机制,使得不同时刻的解码能够关注不同位置的输入信息,提高预测准确性。原创 2020-06-13 16:52:14 · 6302 阅读 · 0 评论 -
Tensorflow 2.x:Dataset的repeat、shuffle和batch操作
Shuffleshuffle( buffer_size, seed=None, reshuffle_each_iteration=None)This dataset fills a buffer with buffer_size elements, then randomly samples elements from this buffer, replacing the selected elements with new elements. For perfect shuffling,原创 2020-05-25 20:18:55 · 2761 阅读 · 2 评论 -
Tensorflow2.x:使用RNNs预测温度时间序列(时间序列数据转为tf输入流)
本文使用RNNs预测气温,数据集使用weather time series dataset,该数据集包含14中不同特征,如气温、气压、湿度等,数据的统计间隔为10分钟,共包含2009年至2016年共计约42w数据。根据输入特征数、输出序列长度不同,本文使用三种实现:Simple LSTM Model: 单一特征(温度)预测未来单一时刻的温度;多特征(温度、湿度和气压)预测未来单一时刻的温度多特征(温度、湿度和气压)预测未来多个时刻的温度;本文为Tensorflow官方指南学习笔记,自己整理的完原创 2020-05-20 19:49:27 · 1976 阅读 · 0 评论 -
Tensorflow2.x:类别不平衡数据的处理(bias偏置、类别加权、过采样、评价曲线)
二分类训练集正例数pos为492,负例数neg为28431,将所有样本预测为负例,正确率为99.83%。初始bias偏置输出层神经元数为1,使用逻辑回归输出类别似然概率,即p(y=1∣x)=11+e−(w⋅x+b)p(y=1|\boldsymbol x)=\frac{1}{1+e^{-(\boldsymbol w\cdot\boldsymbol x+b)}}p(y=1∣x)=1+e−(w⋅x+b)1假设初始w⋅x\boldsymbol w\cdot \boldsymbol xw⋅x接近于0,则原创 2020-05-20 00:12:11 · 4659 阅读 · 0 评论 -
Tensorflow2.x:利用tf.data.Dataset API读取CSV文件/DataFrame对象作为Keras输入流
使用tensorflow.data.Dataset API的处理CSV文件,作为keras输入流原创 2020-05-19 00:02:37 · 2259 阅读 · 0 评论 -
批标准化详解(Batch Normalization for Reducing Internal Covariate Shift)
文章目录为什么要使用BN?怎样使用BN?如何有效地实现BN?如何训练和推理使用BN的网络?BN作用在神经元的输入侧还是输出侧?为什么BN网络可以使用更高的学习率?为什么BN网络自带正则化效果?Reference深度神经网络训练过程中,各网络层参数在不断变化,每层网络的输入分布不断变化 ,不同的输入分布可能需重新训练,此外,我们也不得不使用 较小的参数初始化、较小的学习率 训练模型,避免网络输出陷入饱和区,造成BP算法的梯度消失,深度模型一般难以训练。作者称这种内部网络层输入分布变化的现象为“Intern原创 2020-05-17 13:29:04 · 648 阅读 · 0 评论 -
Win10环境下安装GPU版本Tensorflow
文章目录配置成功的环境Win10 x64 + GTX 960MCUDA v10.0cuDNN v7.6.5Anacoda 3 + python3.7虚拟环境tensorflow-gpu==1.14Tips配置成功的环境Win10 x64 + GTX 960M + CUDA v10.0 + cuDNN v7.6.5 + Anancoda 3 (env python3.7) + tensorfl...原创 2020-05-01 02:57:23 · 823 阅读 · 0 评论