代码实现: 基于tensorflow2.2实现,代码见github。
参考文献
1. Auto-Encoding Variational Bayes
2. 变分自编码器VAE:原来是这么一回事 | 附开源代码
基于潜变量的生成模型

模型联合概率分布可表示为
p
θ
(
x
,
z
)
=
p
θ
(
x
∣
z
)
p
θ
(
z
)
p_{\bm\theta}(\bm x,\bm z)=p_\bm\theta(\bm x|\bm z)p_\bm \theta(\bm z)
pθ(x,z)=pθ(x∣z)pθ(z),模型的生成过程为
z
∼
p
θ
(
z
)
⟹
x
∼
p
θ
(
x
∣
z
)
\bm z\sim p_\bm \theta(\bm z) \implies \bm x\sim p_\bm \theta(\bm x|\bm z)
z∼pθ(z)⟹x∼pθ(x∣z)
考虑一个独立同分布数据集
X
=
{
x
(
i
)
}
i
=
1
N
X=\{\bm x^{(i)}\}_{i=1}^N
X={x(i)}i=1N,我们假设数据的生成过程为:
- 基于先验分布 p θ ( z ) p_\bm \theta(\bm z) pθ(z)生成随机变量 z \bm z z;
- 基于条件概率分 p θ ( x ∣ z ) p_\bm \theta(\bm x|\bm z) pθ(x∣z)生成样本 x \bm x x;
然而,我们很难获取因变量 z \bm z z的分布,如先验概率分布 p θ ( z ∣ x ) = p θ ( x ∣ z ) p θ ( z ) / p θ ( x ) p_\bm \theta(\bm z|\bm x)=p_\bm \theta(\bm x|\bm z)p_\bm \theta(\bm z)/p_\bm \theta(\bm x) pθ(z∣x)=pθ(x∣z)pθ(z)/pθ(x)难以计算。
使用后验概率分布 q ϕ ( z ∣ x ) q_\bm \phi(\bm z|\bm x) qϕ(z∣x)作为真实后验概率分布 p θ ( z ∣ x ) p_\bm \theta(\bm z|\bm x) pθ(z∣x)的近似,将 q ϕ ( z ∣ x ) q_\bm \phi(\bm z|\bm x) qϕ(z∣x)可作为编码器,即给定样本 x \bm x x下,生成包含所有可能的编码 z \bm z z,并可通过编码 z \bm z z重新生成样本 x \bm x x。同样地,将 p θ ( x ∣ z ) p_\bm \theta(\bm x|\bm z) pθ(x∣z)作为解码器,即给定编码 z \bm z z,生成与 x \bm x x对应的分布。
再看一下,传统高斯混合模型的生成思想:
p
(
x
)
=
∑
z
p
(
z
)
p
(
x
∣
z
)
p(x)=\sum_zp(z)p(x|z)
p(x)=z∑p(z)p(x∣z)
式中
p
(
z
)
∼
N
(
0
,
I
)
p(z)\sim\mathcal N(0, I)
p(z)∼N(0,I),
p
(
x
∣
z
)
∼
N
(
μ
(
z
)
,
σ
(
z
)
)
p(x|z)\sim\mathcal N(\mu(z),\sigma(z))
p(x∣z)∼N(μ(z),σ(z))。
我们从标准正太分布中采样一个 z z z,再根据 z z z计算对应各高斯混合基模型的均值和方差,就可以利用高斯混合模型生成 x x x。但是这种模型显然没有利用到监督样本数据,即如何将采样 z z z对应到 x x x?模型的损失函数是什么?
VAE的思想是,每个样本都有自己特定的正太分布 q ( z ∣ x ) q(z|x) q(z∣x),我们有理由学习一个解码器/生成器,把从特定正太分布采样的 z z z还原为 x x x。 我们可从特定分布 q ( z ∣ x ) q(z|x) q(z∣x)中随机采样,生成各式各样与 x x x类似的样本,为了使模型具备通用生成能力(不根据真实样本),我们希望所有的 q ( z ∣ x ) q(z|x) q(z∣x)都近似于标准正太分布,这样我们就可以从标准正太分布中采样,生成随机样本。
变分边界与目标函数
独立同分布数据集对数似然为
log
p
θ
(
x
(
1
)
,
⋯
,
x
(
N
)
)
=
∑
x
log
p
θ
(
x
)
\log p_\bm \theta(\bm x^{(1)},\cdots,\bm x^{(N)})=\sum_\bm x\log p_\bm \theta(\bm x)
logpθ(x(1),⋯,x(N))=x∑logpθ(x)
对于单个样本
log
p
θ
(
x
)
=
∫
z
q
ϕ
(
z
∣
x
)
log
p
θ
(
x
)
d
z
=
∫
z
q
ϕ
(
z
∣
x
)
log
(
p
θ
(
z
,
x
)
q
ϕ
(
z
∣
x
)
q
ϕ
(
z
∣
x
)
p
θ
(
z
∣
x
)
)
d
z
=
∫
z
q
ϕ
(
z
∣
x
)
log
(
p
θ
(
x
∣
z
)
p
θ
(
z
)
q
ϕ
(
z
∣
x
)
)
d
z
+
∫
z
q
ϕ
(
z
∣
x
)
log
(
q
ϕ
(
z
∣
x
)
p
θ
(
z
∣
x
)
)
d
z
=
L
b
+
D
K
L
(
q
ϕ
(
z
∣
x
)
∣
∣
p
θ
(
z
∣
x
)
)
=
−
D
K
L
(
q
ϕ
(
z
∣
x
)
∣
∣
p
θ
(
z
)
)
+
E
q
ϕ
(
z
∣
x
)
[
log
p
θ
(
x
∣
z
)
]
+
D
K
L
(
q
ϕ
(
z
∣
x
)
∣
∣
p
θ
(
z
∣
x
)
)
\begin{aligned} \log p_\bm \theta(\bm x) &=\int_\bm zq_\bm \phi(\bm z|\bm x)\log p_\bm \theta(\bm x)\text d\bm z\\[2ex] &=\int_\bm zq_\bm \phi(\bm z|\bm x)\log\left(\frac{p_\bm \theta(\bm z,\bm x)}{q_\bm \phi(\bm z|\bm x)}\frac{q_\bm \phi(\bm z|\bm x)}{p_\bm \theta(\bm z|\bm x)}\right)\text d\bm z\\[2ex] &=\int_\bm zq_\bm \phi(\bm z|\bm x)\log\left(\frac{p_\bm \theta(\bm x|\bm z)p_\bm \theta(\bm z)}{q_\bm \phi(\bm z|\bm x)}\right)\text d\bm z + \int_\bm zq_\bm \phi(\bm z|\bm x)\log\left(\frac{q_\bm \phi(\bm z|\bm x)}{p_\bm \theta(\bm z|\bm x)}\right)\text d\bm z\\[2ex] &=L_b+D_{KL}\Big(q_\bm \phi(\bm z|\bm x)\big|\big|p_\bm \theta(\bm z|\bm x)\Big)\\[2ex] &=-D_{KL}\Big(q_\bm \phi(\bm z|\bm x)\big|\big|p_\bm \theta(\bm z)\Big)+\Bbb E_{q_\bm \phi(\bm z|\bm x)}[\log p_\bm \theta(\bm x|\bm z)]+D_{KL}\Big(q_\bm \phi(\bm z|\bm x)\big|\big|p_\bm \theta(\bm z|\bm x)\Big) \end{aligned}
logpθ(x)=∫zqϕ(z∣x)logpθ(x)dz=∫zqϕ(z∣x)log(qϕ(z∣x)pθ(z,x)pθ(z∣x)qϕ(z∣x))dz=∫zqϕ(z∣x)log(qϕ(z∣x)pθ(x∣z)pθ(z))dz+∫zqϕ(z∣x)log(pθ(z∣x)qϕ(z∣x))dz=Lb+DKL(qϕ(z∣x)∣∣∣∣pθ(z∣x))=−DKL(qϕ(z∣x)∣∣∣∣pθ(z))+Eqϕ(z∣x)[logpθ(x∣z)]+DKL(qϕ(z∣x)∣∣∣∣pθ(z∣x))
因为KL散度为不小于0的距离度量,因此
L
b
L_b
Lb为目标函数下界。因为目标函数值与
q
ϕ
(
z
∣
x
)
q_\bm\phi(\bm z|\bm x)
qϕ(z∣x)无关,调整
q
ϕ
(
z
∣
x
)
q_\bm\phi(\bm z|\bm x)
qϕ(z∣x)最大化
L
b
L_b
Lb,目标函数值不改变,但目标函数第二项KL散度趋近于0,若继续调整
p
θ
(
x
∣
z
)
p_\bm\theta(\bm x|\bm z)
pθ(x∣z)以最大化
L
b
L_b
Lb,则目标函数值很有可能增加。因此,最大化目标函数的下界
L
b
L_b
Lb即可,第三项KL散度可忽略。

VAE模型结构

训练过程中,编码器为每个样本 x \bm x x生成对应正太分布的均值和方差,表示样本来自于 N ( μ ( z ) , σ ( z ) ) \mathcal N(\mu(z),\sigma(z)) N(μ(z),σ(z)),解码器将从 N \mathcal N N中的采样,重构回对应的样本 x \bm x x。
同一样本在不同mini-batch中对应不同的分布,模型为了更好重构,倾向于将编码器输出方差至为0,这样就丧失了随机性,即模型丧失样本生成能力,退化为普通的AutoEncoder。因此,VAE约束所有编码向量服从标准正太分布,从而防止噪声为零。
由于
−
D
K
L
(
N
(
μ
,
σ
2
∣
∣
N
(
0
,
1
)
)
)
=
1
2
(
log
σ
2
−
μ
2
−
σ
2
+
1
)
-D_{KL}\Big(\mathcal N(\mu, \sigma^2\big|\big|\mathcal N(0, 1))\Big)=\frac{1}{2}\Big(\log\sigma^2-\mu^2-\sigma^2+1\Big)
−DKL(N(μ,σ2∣∣∣∣N(0,1)))=21(logσ2−μ2−σ2+1)
如果,我们强制令
p
θ
(
z
)
p_\theta(z)
pθ(z)服从标准正太分布,最大化目标函数等价于最大化
1
2
(
−
log
σ
2
+
μ
2
+
σ
2
−
1
)
+
E
q
ϕ
(
z
∣
x
)
[
log
p
θ
(
x
∣
z
)
]
\frac{1}{2}\Big(-\log\sigma^2+\mu^2+\sigma^2-1\Big)+\Bbb E_{q_\bm \phi(\bm z|\bm x)}[\log p_\bm \theta(\bm x|\bm z)]
21(−logσ2+μ2+σ2−1)+Eqϕ(z∣x)[logpθ(x∣z)]
其中,第一项为 正则化损失,它有助于学习具有良好结构的潜在空间;第二项为 重构损失,它迫使解码后的样本匹配初始输入,如mnist数据集规范化为[0, 1]区间,解码器使用sigmoid输出,则此项为交叉熵。
此外,采样操作不可导,模型实现使用 重参数技巧:
ϵ
∼
N
(
0
,
1
)
⟹
μ
+
ϵ
×
σ
∼
N
(
μ
,
σ
2
)
\epsilon\sim\mathcal N(0, 1) \implies \mu+\epsilon\times \sigma \sim\mathcal N(\mu,\sigma^2)
ϵ∼N(0,1)⟹μ+ϵ×σ∼N(μ,σ2)
根据编码器生成样本的均值和方差,但是我们不能直接生成对应的正太分布,再从中采样作为编码器输出,因为采样过程不可导。换种思路,从标准正太分布中采样数据(作为样本数据不参与求导),根据编码器输出将其变换到对应的正太分布,再作为编码器输出。
神经网络实现VAE
