NO.5最长回文子串
原题:
给定一个字符串 s,找到 s 中最长的回文子串。你可以假设 s 的最大长度为1000。
示例 1:
输入: "babad"输出: "bab"注意: "aba"也是一个有效答案。
示例 2:
输入: "cbbd"输出: "bb"
简单粗暴来求一个字符串的最长回文子串,我们可以将以每个字符为首的子串都遍历一遍,判断是否为回文,如果是回文,再判断最大长度的回文子串。算法简单,但是算法复杂度太高。
l = len(s)
max_length = 0
p = ''
if len(s) == 1:
return s
for i in range(l):
for j in range(i + 1, l):
is_p = True
for k in range(i, int((i + j) / 2) + 1):
if s[k] != s[j - k + i]:
is_p = False
break
if is_p and (j - i + 1) > max_length:
max_length = j - i + 1
p = s[i:j + 1]
if p == '':
p = s[0]
return p
第二种方法来源网络
有两个主要的步骤:
-
将所有可能的奇数/偶数长度的回文子串都转换成了奇数长度:在每个字符的两边都插入一个特殊的符号。abba => #a#b#b#a#, aba => #a#b#a#
-
用数组 P[i] 来记录以字符S[i]为中心的最长回文子串向左/右扩张的长度,并增加两个辅助变量id和mx,其中 id 为已知的 {右边界最大} 的回文子串的中心,mx则为id+P[id],也就是这个子串的右边界。
mx−i>p[j]:p[i]=p[j]mx−i<=p[j]:p[i]=mx−i
# manacher算法 def manacher(self): # 字符串处理, # 用特殊字符隔离字符串方便处理偶数子串 s = '#' + '#'.join(self.string) + '#' lens = len(s) # 辅助列表: # f[i]表示i作中心的最长回文子串的长度 f = [] # 记录对i右边影响最大的字符位置j maxj = 0 # 记录j影响范围的右边界 maxl = 0 # 记录最长的回文子串长度 maxd = 0 # 遍历字符串 for i in range(lens): if maxl > i: # 这里为了方便后续计算使用count, # 其表示当前字符到 #其影响范围的右边界的距离 count = min(maxl-i, int(f[2*maxj-i]/2)+1) else : count = 1 # 两边扩展 while i-count >= 0 and i+count \ < lens and s[i-count] == s[i+count]: count += 1 # 更新影响范围最大的字符j及其右边界 if(i-1+count) > maxl: maxl, maxj = i-1+count, i f.append(count*2-1) # 更新回文子串最长长度 maxd = max(maxd, f[i]) # 去除特殊字符 return int((maxd+1)/2)-1
【推荐阅读】