参考链接:http://www.fairlynerdy.com/what-is-r-squared/
确定拟合性好的一个常用指标是 R 平方
确定拟合性好的一个常用指标是 可决系数,也就是R 平方。R2接近1,说明拟合效果好。
总误差SST的计算方式如下图所示。
回归误差SSR的计算方式如下图所示。
未解释离差的平方和,简称误差平方和,用SSE表示。SSE=
R2的计算公式为:

相对数
表示的是回归关系已经解释的y值变异在其总变异中所占的比率。
在大多数统计书中,您会看到 R 平方值始终在 0 到 1 之间,最佳值为 1.0。这只是部分事实。
但是R2的下限不是零,也可以得到负r平方值。
负R平方值是什么意思?
如果线性回归的结果比平均值还差,则计算的R2为负值(线性回归的结果太差了!)
奇怪的R2


为什么不可能计算非线性回归的有效 R 平方?
R 平方适合于线性模型的基本假设。如果不适合线性模型,则不应使用它。原因其实很容易理解。
对于线性模型,平方错误的总和总是以特定的方式相加:SS回归 + SS 错误 = SS 总计。
这似乎很合乎逻辑。回归模型所占的方差加上错误方差加起来等于总方差。此外,R 平方=SS 回归 / SS 总计,在数学上必须产生 0 到 100% 之间的值。
在非线性回归中,SS回归+SS错误不等于SS总!这完全使非线性模型的 R 平方失效,并且它不再必须在 0 到 100% 之间。
(参考:https://blog.minitab.com/en/adventures-in-statistics-2/why-is-there-no-r-squared-for-nonlinear-regression)
其他
这篇回答中给了两个信息:
(1)线性回归的R方等于实际值与预测值的相关系数的平方
(2)randomForest is reporting variation explained as opposed to variance explained.