故障树手册(Fault Tree handbook)(4)

第六章 概率理论:关于事件的数学描述

6.1 概述

通过学习前边的内容我们已经奠定了故障树的基础,我么几乎已经可以开始进入一些真实的故障树案例教学。但是,因为我们在第八章和第九章的例子中不仅有故障树的构建,还有故障树的评估,所以我们必须在第六章和第七章先把评估涉及的数学概念讲清楚。

第六章讲解了定量评估故障树所涉及的基础的数学知识:概率理论。概率论是故障树分析的基础,因为它提供了对事件的分析处理,而事件是故障树的基本组成部分。我们将讨论的概率论的主题包括结果集合和相对频率的概念、概率论的代数、组合分析和一些集合论。我们从结果集合的概念开始,它可以方便地用随机实验及其结果来描述。

6.2 随机试验和随机试验结果

随机试验被定义为可能获得的结果是不确定的观测活动。如果一个观测总是出现相同的结果,那么这个结果就是确定性的。如果结果是许多可能性中的一种,那么这个结果就是非确定的。因此,如果我们抛一个硬币来猜是“人头”还是“国徽”,我们就在进行一个抛硬币的随机试验。如果我们的硬币“有猫腻”,我们知道它两面都是“国徽”,我们就不是在进行随机试验,因为结果肯定是“国徽”。类似的,掷骰子是一个随机的实验,除非骰子在每次试验中都给出完全相同的结果。“随机试验”这个术语十分常见,读者可以举出大量的例子。测量某个弹簧的刚度、电机的故障时间、测量陨石中的铁含量等。很明显,我们周边许多观测都是随机试验。

随机试验的特点是把所有可能的结果一一列出。当结果不是很多时,列出所有结果相对容易,但是如果结果的数量非常大,清单或许将是大到无法实现。随机实验结果的项目化在数学上被称为结果空间,但我们认为“结果集合”这个术语更具有描述性。符号 E 1 , E 2 , . . . E n {E_1,E_2,...E_n} E1,E2,...En将被用于表示事件 E 1 , E , 2 , . . . E n E_1,E,2,...En E1,E,2,...En的结果集合。结果空间的概念将用几个例子进行说明。

名称 内容
随机试验 一次抛硬币
目标 判定是正面还是反面
结果集合 { T , H } \{T,H\} { TH}

注意,如果当前存在有硬币掉进附近的缝隙中找不到的情况,则应该把这种情况加入到结果集合中。

名称 内容
随机试验 把硬币抛向一个有标尺的平面
目标 判定硬币不动后的坐标
结果集合 { { x 1 , y 1 } , { x 2 , y 2 } , . . . } \{\{x_1,y_1\},\{x_2,y_2\},...\} { { x1,y1},{ x2,y2},...}, { x , y } \{x,y\} { x,y}是硬币的笛卡尔坐标。

注意,这个结果集合有无穷多的元素。

名称 内容
随机试验 启动柴油机
目标 判定柴油机能否正常启动
结果集合 { S , F } \{S,F\} { S,F}
名称 内容
随机试验 掷色子
目标 色子静止后的数字是多少
结果集合 { 1 , 2 , 3 , 4 , 5 , 6 } \{1,2,3,4,5,6\} { 1,2,3,4,5,6}
名称 内容
随机试验 一次关闭阀门的尝试
目标 判定阀门关闭©还是保持开启(O)
结果集合 { C , O } \{C,O\} { C,O}

此外,如果我们考虑到部分故障模式,那么结果集合可能包含例如“阀门打开不到一半”,“阀门关闭后又自己打开了”之类的事件。

名称 内容
随机试验 系统运行规定长度的时间。系统中存在两个关键部件A和B,如果A和B之中任何一个有问题,系统就会发生故障。(因此A和B是单一故障)
目标 判定在时间 t t t内系统会如何出问题
结果集合 {系统没出问题,A故障导致系统故障,B故障导致系统故障,A和B都故障了导致系统故障}

注意,我们在结果集合中没有包含故障发生的时间,因为我们只关心系统在规定的时间内有没有发生故障。

名称 内容
随机试验 两个并行系统的运行,如果两个系统分别被指定为A和B,我们定义 F i = F_i= Fi= 系统i故障的事件, O i = O_i= Oi= 系统i没有失效的事件 ( i = A , B ) (i=A,B) (i=A,B)
目标 判定在规定的时间区间系统是否失效
结果集合 { ( F A , O B ) , ( O A , F B ) ( O A , O B ) ( F A , F B ) } \{(F_A,O_B),(O_A,F_B)(O_A,O_B)(F_A,F_B)\} { (FA,OB),(OA,FB)(OA,OB)(FA,FB)}

在本例中,系统总体故障只存在事件 ( F A , F B ) (F_A,F_B) (FA,FB)

6.3 概率的相对频率定义

假设一些随机试验,其结果集合是 E 1 , E 2 , E 3 . . . E n E_1,E_2,E_3...E_n E1,E2,E3...En。假设我们重复N次试验,观察结果 E 1 E_1 E1出现的次数。在重复N次后, E 1 E_1 E1出现了 N 1 N_1 N1次,我们就可以设定该结果出现的几率为
N 1 N \frac{N_1}{N} NN1
这个结果表示在进行该项随机试验N次,结果 E 1 E_1 E1出现的频率。现在我们进一步探索这个问题:如果试验重复的次数N变成无穷大( N → ∞ N\to \infty N),那么这个几率是否会趋近于一个极限值?如果这个极限值存在,我们将这个极限值叫做事件 E 1 E_1 E1相关的概率,用符号 P ( E 1 ) P(E_1) P(E1)表示。因此
P ( E 1 ) = lim ⁡ N → ∞ ( N 1 N ) (VI-1) P(E_1)=\lim_{N \to \infty}(\frac{N_1}{N}) \tag{VI-1} P(E1)=Nlim(NN1)(VI-1)

从这个定义中我们可以轻松得到如下的性质:

  • 0 < P ( E 1 ) < 1 0<P(E_1)<1 0<P(E1)<1
  • 如果 P ( E 1 ) = 1 P(E_1)=1 P(E1)=1, E 1 E_1 E1一定会发生。
  • 如果 P ( E 1 ) = 0 P(E_1)=0 P(E1)=0,则 E 1 E_1 E1一定不会发生。

概率更正式的定义涉及到集合的原理,在这里不多做叙述,公式VI-1作为实用中使用的定义已经足够了。

6.4 概率的数学运算

我们从一个随机试验中选择A与B两个可能出现的结果,假设A与B是互斥的。这就意味着在试验的一次操作中A和B不会同时发生。举个例子,我们抛硬币只能得到“正面”或“反面”两个结果中的一个。我们不可能在一次抛硬币中同时获得正面和反面。如果A和B是互斥的,我们可以列出A与B概率间的数学表达:
P ( A   o r   B ) = P ( A ) + P ( B ) (VI-2) P(A\ or \ B)=P(A)+P(B) \tag{VI-2} P(A or B)=P(A)+P(B)(VI-2)

这种关系有时被称为“概率的加法规则”,适用于互斥的事件。这个公式可以很容易的扩展到任意数量的互斥事件A,B,C,D,E,……
P ( A   o r   B   o r   C   o r   D   o r   E ) = P ( A ) + P ( B ) + P ( C ) + P ( D ) + P ( E ) (VI-3) P(A\ or\ B \ or \ C \ or\ D\ or \ E)=P(A)+P(B)+P(C)+P(D)+P(E) \tag{VI-3} P(A or B or C or D or E)=P(A)+P(B)+P(C)+P(D)+P(E)(VI-3)

而对于那些不是完全互斥的事件,我们就需要一个更加通用的公式。例如,假设一个掷色子的随机试验,我们定义如下两个事件:

  • A——“数字是2”
  • B——“数字是偶数”

很明显这两个事件不是完全互斥的,因为如果结果是2,那么A和B都符合。则现在 P ( A   o r   B ) P(A\ or\ B) P(A or B)的通用表达为
P ( A   o r   B ) = P ( A ) + P ( B ) − P ( A   a n d   B ) (VI-4) P(A\ or \ B)=P(A)+P(B)-P(A \ and \ B) \tag{VI-4} P(A or B)=P(A)+P(B)P(A and B)(VI-4)

如果A和B是完全互斥的,那么 P ( A   a n d   B ) = 0 P(A \ and \ B)=0 P(A and B)=0,公式VI-4就变成了公式VI-2, 读者还应该注意到当事件并不互斥的情况下,公式VI-2总是对真实概率VI-4的一个上边界。现在让我们回到刚才的抛色子问题,我们通过数学方法计算 P ( A   o r   B ) P(A\ or\ B) P(A or B)
P ( A   o r   B ) = 1 / 6 + 1 / 2 − 1 / 6 = 1 / 2 P(A \ or \ B)=1/6+1/2-1/6=1/2 P(A or B)=1/6+1/21/6=1/2

公式IV-4能被扩展到任意数量的事件。举个例子,对于A,B,C三个事件:
P ( A   o r   B   o r   C ) = P ( A ) + P ( B ) + P ( C ) − P ( A   a n d   B ) − P ( A   a n d   C ) − P ( B   a n d   C ) + P ( A   a n d   B   a n d   C ) (VI-5) P(A \ or \ B \ or \ C)=P(A)+P(B)+P(C)-P(A \ and \ B) - P(A \ and \ C) - P(B \ and \ C)+P(A \ and \ B \ and \ C) \tag{VI-5} P(A or B or C)=P(A)+P(B)+P(C)P(A and B)P(A and C)P(B and C)+P(A and B and C)(VI-5)

对于n个事件 E 1 , E 2 , . . . . , E n E_1,E_2,....,E_n E1,E2,....,En,通用的公式可以表示为:
P ( E 1   o r   E 2   o r . . . E n ) = ∑ i = 1 n P ( E i ) − ∑ i = 1 n − 1 ∑ j = i + 1 n P ( E i   a n d   E j ) + ∑ i = 1 n − 2 ∑ j = i + 1 n − 1 ∑ k = j + 1 n P ( E i   a n d   E j   a n d   E k ) . . . + ( − 1 ) n P ( E 1   a n d   E 2 a n d   . . .   a n d   E n ) (VI-6) \begin{aligned} P(E_1 \ or \ E_2 \ or ...E_n)&= \sum_{i=1}^{n}P(E_i)-\sum_{i=1}^{n-1}\sum_{j=i+1}^{n}P(E_i \ and \ E_j) + \\ &\sum_{i=1}^{n-2}\sum_{j=i+1}^{n-1}\sum_{k=j+1}^{n}P(E_i \ and \ E_j \ and \ E_k)... + \\ &(-1)^n P(E_1 \ and \ E_2 and \ ...\ and \ E_n) \tag{VI-6}\end{aligned} P(E1 or E2 or...En)=i=1nP(Ei)i=1n1j=i+1nP(Ei and Ej)+i=1n2j=i+1n1k=j+1nP(Ei and Ej and Ek)...+(1)nP(E1 and E2and ... and En)(VI-6)
(CSDN的公式渲染引擎是Katax,不支持split公式格式,怎么解决啊?)
如果我们忽略两个或以上事件 E i E_i Ei同时发生的可能性概率,公式VI-6可以化简成
P ( E 1   o r   E 2   o r   . . .   E n ) = ∑ i = 1 n P ( E i ) (VI-7) P(E_1 \ or \ E_2 \ or \ ... \ E_n) = \sum_{i=1}^{n}P(E_i) \tag{VI-7} P(E1 or E2 or ... En)=i=1nP(Ei)(VI-7)

公式VI-7被称为“稀有事件近似法则(rare event approximation)”,当 P ( E i ) < 0.1 P(E_i)<0.1 P(Ei)<0.1时,它与真实概率之间的误差将小于10%。进一步说,任何误差都是保守的,因为真实概率会比公式VI-7的结果略低一些。稀有事件近似法则在故障树的量化中具有十分重要的作用,它将在第十一章中进一步论述。

现在有两个事件A和B,它们互相独立。这意味着实验中的几次重复期间,A的发生(不发生)对于随后B的发生没有任何影响,反之亦然。如果一个平衡性很好的钱币被随机抛起,第一次出现正面并不会对第二次出现反面的概率有任何影响,都是1/2。所以连续的抛硬币的结果是被看成是互相独立的。同样的,如果两个部件并行运行,它们互相间是隔离的,其中一个的故障并不会对另外一个造成影响。在这种情况下,部件的故障就是独立事件。如果A和B是互相独立的两个事件,我们可以写成
P ( A   a n d   B ) = P ( A ) P ( B ) (VI-8) P(A \ and \ B)=P(A)P(B) \tag{VI-8} P(A and B)=P(A)P(B)(VI-8)
这经常被称作“概率的乘法原理”,我们也可以轻易的得到多个事件的扩展。
P ( A   a n d   B   a n d   C   a n d   D ) = P ( A ) P ( B ) P ( C ) P ( D ) (VI-9) P(A \ and \ B \ and \ C \ and \ D)=P(A)P(B)P(C)P(D) \tag{VI-9} P(A and B and C and D)=P(A)P(B)P(C)P(D)(VI-9)

我们经常会遇到事件间并不是互相独立的,换句话说,它们是互相依赖的。举个例子,电路中过热的电阻会影响边上电感或其他电路的故障概率。星期二下雨的概率很大程度上受到星期一天气整体情况的影响。为了更好的探讨这一概念,我们将介绍条件概率的概念,我们引入条件概率的符号: P ( B ∣ A ) P(B|A) P(BA),它表示A事件已经发生的条件下,B事件发生的概率。A和B都发生的概率会变成如下形式
P ( A   a n d   B ) = P ( A ) P ( B ∣ A ) = P ( B ) P ( A ∣ B ) (VI-10) P(A \ and \ B)=P(A)P(B|A) = P(B)P(A|B) \tag{VI-10} P(A and B)=P(A)P(BA)=P(B)P(AB)(VI-10)
如果A和B是互相独立的,那么 P ( A ∣ B ) = P ( A )   a n d P ( B ∣ A ) = P ( B ) P(A|B)=P(A) \ and P(B|A) = P(B) P(AB)=P(A) andP(BA)=P(B),公式VI-10就简化成了公式VI-8。公式VI-10构成了事件A和B联合发生的概率通用表示形式。

对于A、B、C三个事件,我们有
P ( A   a n d   B   a n d   C ) = P ( A ) P ( B ∣ A ) P ( C ∣ A   a n d   B ) (VI-11) P(A \ and \ B \ and \ C) = P(A)P(B|A)P(C|A \ and \ B) \tag{VI-11} P(A and B and C)=P(A)P(BA)P(CA and B)(VI-11)
其中 P ( C ∣ A   a n d   B ) P(C|A \ and \ B) P(CA and B)是A和B已经发生时C发生的概率。对于n个事件 E 1 , E 2 , E 3 . . . E n E_1,E_2,E_3...E_n E1,E2,E3...En
P ( E 1   a n d   E 2   a n d   E 3   . . . E n ) = P ( E 1 ) P ( E 2 ∣ E 1 ) P ( E 3 ∣ E 1   a n d   E 2 ) . . . P ( E n ∣ E 1   a n d   E 2 . . .   a n d E n − 1 ) (VI-12) P(E_1 \ and \ E_2 \ and \ E_3 \ ...E_n) = P(E_1)P(E_2|E_1)P(E_3|E_1 \ and \ E_2) \\ ... P(E_n|E_1 \ and \ E_2 ... \ and E_{n-1}) \tag{VI-12} P(E1 and E2 and E3 ...En)=P(E1)P(E2E1)P(E3E1 and E2)...P(EnE1 and E2... andEn1)(VI-12)

我们举一个非常有用的例子,考虑如下的随机试验:我们从52张打乱规则的牌中选择一张。我们记下牌面(如7或者Q等等),并把它放在一边(我们并不把它放进牌堆里——这就是“不重复抽样”)。然后我们从余下的51张牌中再抽取一张并记录牌面。现在我们计算在这两次抽牌中,我们抽中A的概率是多少。这有三个互相独立的概率数据

  • 第一张抽到A然后第二张不是A
  • 第一张不是A然后第二张抽到A
  • 第一张和第二张都抽到了A

我们用数学进行表达,这样看起来更加简洁:

P ( 两 次 抽 牌 至 少 有 一 张 A ) = P ( A ) = P ( A 1   a n d   A ‾ 2 ) + P ( A ‾ 1   a n d   A 2 ) + P ( A 1 a n d A 2 ) = P ( A 1 ) P ( A ‾ 2 ∣ A 1 ) + P ( A 1 ‾ ) P ( A 2 ∣ A 1 ‾ ) + P ( A 1 ) P ( A 2 ∣ A 1 ) \begin{aligned} P(两次抽牌至少有一张A) &= P(A) \\ &= P(A_1 \ and \ \overline{A}_2)+P(\overline{A}_1 \ and \ A_2)+P(A_1 and A_2) \\ &= P(A_1)P(\overline{A}_2|A_1)+P(\overline{A_1})P(A_2|\overline{A_1})+P(A_1)P(A_2|A_1) \end{aligned} P(A)=P(A)=P(A1 and A2)+P(A1 and A2)+P(A1andA2)=P(A1)P(A2A1)+P(A1)P(A2A1)+P(A1)P(A2A1)

在这里字母的下标指的是第几次抽牌, A A A用于指代“抽到A”, A ‾ \overline{A} A用于指代“没有抽到A”。我们能求出这个表达式的值为
P ( A ) = ( 4 52 ) ( 48 51 ) + ( 48 52 ) ( 4 51 ) + ( 4 52 ) ( 3 51 ) = 396 52 × 51 = 33 221 = 0.149 \begin{aligned} P(A) = (\frac{4}{52})(\frac{48}{51})+(\frac{48}{52})(\frac{4}{51})+(\frac{4}{52})(\frac{3}{51})=\frac{396}{52\times 51}=\frac{33}{221}=0.149 \end{aligned} P(A)=(524)(5148)+(5248)(514)+(524)(513)=52×51396=22133=0.149
现在让我们计算得到一张A和一张K的概率:
$$ P ( A   a n d   K ) = P ( A 1 ) P ( K 2 ∣ A 1 ) + P ( K 1 ) P ( A 2 ∣ K 1 ) = ( 4 52 ) ( 4 51 ) + ( 4 52 ) ( 4 51 ) = 0.012 \begin{aligned} P(A \ and \ K) &=P(A_1)P(K_2|A_1)+P(K_1)P(A_2|K_1) \\ &=(\frac{4}{52})(\frac{4}{51})+(\frac{4}{52})(\frac{4}{51}) \\ &=0.012 \end{aligned} P(A and K)=P(A1)P(K2A1)+P(K1)P(A2K1)=(524)(514)+(524)(514)=0.012
我们现在指出一个很重要的观点。如果事件“抽到一张A”和事件“抽到一张K”是互相独立的,那么
P ( A   a n d   K ) = P ( A ) P ( K ) = ( 0.149 ) 2 = 0.022 P(A \ and\ K)=P(A)P(K)=(0.149)^2 = 0.022 P(A and K)=P(A)P(K)=(0.149)2=0.022
但是我们刚算出 P ( A   a n d   K ) = 0.012 ≠ 0.022 P(A \ and \ K)=0.012 \neq 0.022 P(A and K)=0.012=0.022。这是因为该问题涉及的两件事并不互相独立。在这一点上,读者应该能够提出一个论点,即如果抽到的第一张牌后放回排堆里,并且在第二次抽之前洗牌,那么所讨论的事件将是独立的。

故障树分析中的一个重要应用就是,计算在一个互相独立的事件集合中的一个及以上事件的发生概率。

假设一个互相独立的事件 E 1 , E 2 , E 3 , . . . E n {E_1,E_2,E_3,...E_n} E1,E2,E3,...En,我们定义 E 1 ‾ \overline{E_1} E1表示 E 1 E_1 E1的未发生事件,同样方法表示 E 2 E_2 E2 E n E_n En。因为任何一个事件的结果都可能是发生或未发生。我们可以得到
P ( E i ‾ ) + P ( E i ) = 1 (VI-13) P(\overline{E_i})+P(E_i)=1 \tag{VI-13} P(Ei)+P(Ei)=1(VI-13)
P ( E i ‾ ) = 1 − P ( E i ) (VI-14) P(\overline{E_i}) = 1- P(E_i) \tag{VI-14} P(Ei)=1P(Ei)(VI-14)

现在关于事件 E i E_i Ei我们可以得到两个概率,事件 E i E_i Ei至少发生一次,或这 E i E_i Ei一次也没发生。因此

P ( E i 至 少 发 生 一 次 ) = 1 − P ( E i 一 次 都 没 发 生 ) = 1 − P ( E 1 ‾   a n d E 2 ‾   a n d   . . .   E n ‾ ) P(E_i至少发生一次) =1-P(E_i一次都没发生) \\ =1-P(\overline{E_1} \ and \overline{E_2} \ and \ ... \ \overline{E_n}) P(Ei)=1P(Ei)=1P(E1 andE2 and ... En)

我们知道E是互相独立的,根据这一点,我们其实也能直观的得到 E ‾ \overline{E} E也是互相独立的。事实上,这一点也能轻易的证明。因此
P

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值