BZOJ 2460 [BeiJing2011]元素 线性基入门

2460: [BeiJing2011]元素

Time Limit: 20 Sec   Memory Limit: 128 MB
Submit: 1649   Solved: 856
[ Submit][ Status][ Discuss]

Description

  相传,在远古时期,位于西方大陆的 Magic Land 上,人们已经掌握了用魔
法矿石炼制法杖的技术。那时人们就认识到,一个法杖的法力取决于使用的矿石。
一般地,矿石越多则法力越强,但物极必反:有时,人们为了获取更强的法力而
使用了很多矿石,却在炼制过程中发现魔法矿石全部消失了,从而无法炼制
出法杖,这个现象被称为“魔法抵消” 。特别地,如果在炼制过程中使用超过
一块同一种矿石,那么一定会发生“魔法抵消”。 
  后来,随着人们认知水平的提高,这个现象得到了很好的解释。经过了大量
的实验后,著名法师 Dmitri 发现:如果给现在发现的每一种矿石进行合理的编
号(编号为正整数,称为该矿石的元素序号),那么,一个矿石组合会产生“魔
法抵消”当且仅当存在一个非空子集,那些矿石的元素序号按位异或起来
为零。 (如果你不清楚什么是异或,请参见下一页的名词解释。 )例如,使用两
个同样的矿石必将发生“魔法抵消”,因为这两种矿石的元素序号相同,异或起
来为零。 
  并且人们有了测定魔力的有效途径,已经知道了:合成出来的法杖的魔力
等于每一种矿石的法力之和。人们已经测定了现今发现的所有矿石的法力值,
并且通过实验推算出每一种矿石的元素序号。 
   现在,给定你以上的矿石信息,请你来计算一下当时可以炼制出的法杖最多
有多大的魔力。 
 

Input

第一行包含一个正整数N,表示矿石的种类数。 
  接下来 N行,每行两个正整数Numberi 和 Magici,表示这种矿石的元素序号
和魔力值。

Output

仅包一行,一个整数:最大的魔力值


Sample Input

3
1 10
2 20
3 30

Sample Output

50

HINT


由于有“魔法抵消”这一事实,每一种矿石最多使用一块。 

如果使用全部三种矿石,由于三者的元素序号异或起来:1 xor 2 xor 3 = 0 ,

则会发生魔法抵消,得不到法杖。 

可以发现,最佳方案是选择后两种矿石,法力为 20+30=50。 



对于全部的数据:N ≤ 1000,Numberi ≤ 10^18

,Magici ≤ 10^4

Source



线性基模板题。贪心的把所有元素按价值排序,依次插入线性基,如果插入成功就说明可以选取。


贪心的证明:反证法。假设我们当前选取的元素x[1]排在前面却不可以被放进线性基,那么它一定可以被若干个元素表示出来。则

变形一下得


明显不符。

对于x[1]之后的元素,可以用类似的方式证明。

更详细的证明链接


#include <cstdio>
#include <iostream>
#include <string.h>
#include <string> 
#include <map>
#include <queue>
#include <deque>
#include <vector>
#include <set>
#include <algorithm>
#include <math.h>
#include <cmath>
#include <stack>
#include <iomanip>
#define mem0(a) memset(a,0,sizeof(a))
#define meminf(a) memset(a,0x3f,sizeof(a))
using namespace std;
typedef long long ll;
typedef long double ld;
typedef double db;
const int maxn=1005,maxk=60,inf=0x3f3f3f3f;  
const ll llinf=0x3f3f3f3f3f3f3f3f;   
const ld pi=acos(-1.0L);
ll x[maxn];

struct haru {
	int val;
	ll t;
}; 
haru a[maxn];

bool cmp(haru a,haru b) {
	return a.val>b.val;
}

bool linear_basis_insert(ll p) {
	for (int i=maxk;i>=0;i--) {
		if ((p>>i)%2==1) {
			if (!x[i]) {
				x[i]=p;
				return true;
			} else p=p^x[i];
		}
	}
	return p!=0;
}

int main() {
	int n,i,sum=0;
	scanf("%d",&n);
	for (i=1;i<=n;i++)
		scanf("%lld%d",&a[i].t,&a[i].val);
	sort(a+1,a+n+1,cmp);
	mem0(x);
	for (i=1;i<=n;i++)
		if (linear_basis_insert(a[i].t)) sum+=a[i].val;
	printf("%d\n",sum);
	return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值