使用skflow 进行模型训练,往往需要很多的时间,特别是数据量增大的时候。
这样每次预测都重新训练一次模型是不现实的。
而模型往往需要重复使用,因此将训练好的模型保存下来并随时调用时很有必要的。
下面设训练好的模型是 classifier
用.save属性将 classifier 存为
'/tmp/tf_examples/my_model_1/' 路径下的 my_model_1 文件
import skflow
classifier = skflow.TensorFlowLinearRegression()
classifier.fit(...)
classifier.save('/tmp/tf_examples/my_model_1/')
new_classifier = TensorFlowEstimator.restore('/tmp/tf_examples/my_model_2')
new_classifier.predict(...)
使用 .restore 属性重新加载 保存的模型,并用它进行预测。
来源 : http://www.open-open.com/lib/view/open1455374055261.html