skflow 保存,调用已训练好的模型

使用skflow 进行模型训练,往往需要很多的时间,特别是数据量增大的时候。

这样每次预测都重新训练一次模型是不现实的。

而模型往往需要重复使用,因此将训练好的模型保存下来并随时调用时很有必要的。

下面设训练好的模型是   classifier  

用.save属性将 classifier 存为

'/tmp/tf_examples/my_model_1/' 路径下的   my_model_1  文件

import skflow

classifier = skflow.TensorFlowLinearRegression()
classifier.fit(...)
classifier.save('/tmp/tf_examples/my_model_1/')

new_classifier = TensorFlowEstimator.restore('/tmp/tf_examples/my_model_2')
new_classifier.predict(...)
使用 .restore 属性重新加载 保存的模型,并用它进行预测。


来源 : http://www.open-open.com/lib/view/open1455374055261.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值