1. 定义
贝塞尔曲线(Bezier curve),又称贝兹曲线或贝济埃曲线,是应用于二维图形应用程序的数学曲线。一般的矢量图形软件通过它来精确画出曲线,贝兹曲线由线段与节点组成,节点是可拖动的支点,线段像可伸缩的皮筋,我们在绘图工具上看到的钢笔工具就是来做这种矢量曲线的。贝塞尔曲线是计算机图形学中相当重要的参数曲线,在一些比较成熟的位图软件中也有贝塞尔曲线工具,如PhotoShop等。
贝塞尔曲线的一些特性:
- 使用n个控制点
来控制曲线的形状
- 曲线经过起点
和终点
,但不经过中间点
~
2.直观理解
step1:在二维平面内选三个不同的点并依次用线段连接
step2:在线段AB和BC上找到D、E两个点,使得
Step3: 连接DE,并在DE上找到F点,使其满足(抛物线的三切线定理)
Step4.找出符合上述条件的所有点
上述为一个二阶贝塞尔曲线。同样的,也有n解贝塞尔曲线
曲线 | 图示 |
一阶 |