目录
传统的语音增强方法基于一些设定好的先验假设,但是这些先验存在一定的不合理之处。此外传统语音增强依赖于参数的设定,人工经验等。随着深度学习的发展,越来越多的人开始注意使用深度学习来解决语音增强问题。由于单通道使用场景较多,本文就以单通道语音增强为例。目前基于DNN单通道大致可以分为两种方法,第一种寻求噪声语音谱与纯净语音谱的映射(Map),另一种则是基于掩蔽(Mask)的方法。
1. 基于映射的语音增强
基于映射的语音增强方法通过训练DNN模型将噪声谱与纯净谱之间的映射关系,其流程如下图所示,很多博客和文章也有讲这个方法但是我觉得不详细,让初学者一脸懵逼,下面详细介绍。

1.1 训练阶段:
- 输入:这里采用较为简单的特征
本文探讨了深度学习在单通道语音增强中的应用,主要介绍两种方法:基于映射和基于掩蔽的语音增强。在训练阶段,使用DNN模型学习噪声谱与纯净语音谱的映射关系,而在增强阶段,利用模型输出估计的纯净语音幅度谱。文中还提供了Demo效果,包括基于映射和IBM、IRM的语音增强结果,并分享了相关代码。
订阅专栏 解锁全文
3865

被折叠的 条评论
为什么被折叠?



