DNN单通道语音增强(附Demo代码)

本文探讨了深度学习在单通道语音增强中的应用,主要介绍两种方法:基于映射和基于掩蔽的语音增强。在训练阶段,使用DNN模型学习噪声谱与纯净语音谱的映射关系,而在增强阶段,利用模型输出估计的纯净语音幅度谱。文中还提供了Demo效果,包括基于映射和IBM、IRM的语音增强结果,并分享了相关代码。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >


目录

1. 基于映射的语音增强

1.1 训练阶段

1.2 增强阶段

2. 基于掩蔽的语音增强

3. Demo效果以及代码


传统的语音增强方法基于一些设定好的先验假设,但是这些先验存在一定的不合理之处。此外传统语音增强依赖于参数的设定,人工经验等。随着深度学习的发展,越来越多的人开始注意使用深度学习来解决语音增强问题。由于单通道使用场景较多,本文就以单通道语音增强为例。目前基于DNN单通道大致可以分为两种方法,第一种寻求噪声语音谱与纯净语音谱的映射(Map),另一种则是基于掩蔽(Mask)的方法。

1. 基于映射的语音增强

基于映射的语音增强方法通过训练DNN模型将噪声谱与纯净谱之间的映射关系,其流程如下图所示,很多博客和文章也有讲这个方法但是我觉得不详细,让初学者一脸懵逼,下面详细介绍。

1.1 训练阶段:

  • 输入这里采用较为简单的特征࿰
评论 27
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值