都什么年代了,还在做传统波束成形

文章探讨了在不依赖声源角度信息的情况下,利用MVDR算法进行波束成形的可能性。NTT公司提出的CGMM-MVDR方法通过复高斯混合模型估计时频掩码和导向矢量,改善了MVDR在复杂声学环境中的表现。实验结果显示,CGMM-MVDR能有效抑制噪声,提升ASR的识别率。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

对于一般的波束成形(Beamforming, BF)算法需要知道声源的角度( Direction of Arrivals,DOA),从而进行进一步的抑制干扰。但是角度信息在声学环境较为复杂的情况下难以准确估计,那么可不可不使用角度信息直接进行波束成形呢?答案当然是肯定的,大名鼎鼎的NTT(日本电报电话公司,Nippon Telegraph & Telephone)提出了通过复高斯混合模型估计时频掩码和导向矢量,结合常用的MVDR(最小均方无畸变响应,Minimum Variance Distortionless Response)算法,在CHiME-3数据集上让ASR的WER下降了7个点。

I. MVDR

MVDR中文名字叫最小均方无畸变响应,它的精髓就体现在无畸变上。什么叫无畸变呢,就是在对感兴趣方位(声源方向)的信号无失真地输出,这意味着该算法可以直接当做语音后端算法(如ASR)的前处理过程。MVDR波束形成器的公式推导并不复杂,我们这里简单的介绍一下。MVDR由Capon于1969年提出,也称为Capon波束形成器,它的目标是对感兴趣方位的信号无失真输出的同时使波束输出的噪声方差最小。波束输出噪声方差记为

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值