ResNet:用dlib实现人脸识别—C++,包括人脸检测和人脸矫正(附代码)


前言


        前段时间用dlib包做了一下人脸识别设计,这里做一个简单的笔记。设计实现了,人脸的检测,人脸的截取,人脸的矫正和人脸的识别。通过命令行输入的方式,输入人脸库图片,和输入测试图片。用ResNet实现对一个人脸的编码,生成一个128维向量,然后通过计算两个向量之间的距离来实现识别。模型都是别人训练好的,可以直接使用。


准备


         环境搭建这里不说,网上很多教程,这里选用opencv2不用opencv3的原因是opencv3里没有contrib,这也是当时做的时候用血换来的教训,这里要用opencv来进行文件操作。建议把dlib和opencv都放在一个文件夹里,这样在移到其他电脑上时,只需要配置环境变量就可以直接使用。


执行


        以下是我用dlib参考代码改出的代码,代码上我打的有注释,可以很容易看懂。在运行之前先要把图片准备好,还有下载以下两个文件:

         shape_predictor_68_face_landmarks.dat

        dlib_face_recognition_resnet_model_v1.dat

        程序是先执行对图片库里所有的图片进行编码,然后对测试图片编码,最后比对测试图片与人脸库中所有图片编码之间的距离,然后输出距离最小的那个人的标签,从而实现简单的人脸识别。


/*-------------------------------------------------------------------------------------

这是一个例子,说明使用DLIB C++的深度学习工具库。在这里,我们将展示如何进行人脸识别。此示例使用预先培训过的
DLib_人脸识别_resnet_model_v1模型,可从DLIB网站下载。该模型在标准LFW面上的精度为99.38%。识别基准,与其他
最先进的面部识别方法相比截至2017年2月的认可。

on_images_ex.cpp示例。
------------------------------------------------------------------------------------*/
#include <cstdio>
#include <vector>
#include<algorithm>
#include<cstdio>

#include <iostream>
#include <fstream>
#include <cstring>
#include <cstdlib>
#include <cmath>
#include <algorithm>

#include "opencv\cv.h"
#include "opencv2\highgui\highgui.hpp"
#include "opencv2\imgproc\imgproc.hpp"
#include "opencv2\contrib\contrib.hpp"


#include <dlib/dnn.h>
#include <dlib/gui_widgets.h>
#include <dlib/clustering.h>
#include <dlib/string.h>
#include <dlib/image_io.h>
#include <dlib/image_processing/frontal_face_detector.h>
#include <dlib\opencv.h>


using namespace dlib;
using namespace std;
using namespace cv;

/*-----------------------------------------------------------------------------------*/

//下一位代码定义Resnet网络。基本上是复制的

//并从dnn_imagenet_ex.cpp示例粘贴,但我们替换了损失

//使用损耗度量进行分层,使网络变得更小。去读导论吧

//dlib dnn示例了解所有这些内容的含义。

//另外,dnn_metric_learn
评论 13
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值