Logistic Regression 属于分类(classification)问题。
在逻辑回归中,假设函数为
其中g(z)为Sigmoid Function/logistic Function,形状如:
此时,假设函数h(X)的意思为:对于样本x的y=1的可能性的大小
Y=1 时,相当于 g(z)>=0.5 或z>0 或 h (x) >=0.5 或 X*theta >0
Cost Function
y=1时
y=0时
Cost function 两个可以合并成为一个:
把J(theta)用矢量化实现:
最小化theta依旧用梯度下降
其中theta为(n+1)X1向量
方法和线性回归一样,只是假设函数h(x)不一样。
矢量化实现: