[机器学习]02.逻辑回归(Logistic Regression)

Logistic Regression 属于分类(classification)问题。

在逻辑回归中,假设函数


其中g(z)为Sigmoid Function/logistic Function,形状如:


此时,假设函数h(X)的意思为:对于样本x的y=1的可能性的大小

Y=1 时,相当于 g(z)>=0.5 或z>0 或 h (x) >=0.5 或 X*theta >0



Cost Function


y=1时


y=0时




Cost function 两个可以合并成为一个:




把J(theta)用矢量化实现:



最小化theta依旧用梯度下降


其中theta为(n+1)X1向量

方法和线性回归一样,只是假设函数h(x)不一样。


矢量化实现:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值