Pytorch 计算误判率,计算准确率,计算召回率

本文介绍了如何在Pytorch中计算神经网络的准确率、误判率(包括CTW和WTC)以及召回率。通过示例代码详细解释了每个指标的计算方法,从二分类问题出发,拓展到多分类问题。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

无论是官方文档还是各位大神的论文或搭建的网络很多都是计算准确率,很少有计算误判率,

下面就说说怎么计算准确率以及误判率、召回率等指标

1.计算正确率

获取每批次的预判正确个数

train_correct = (pred == batch_y.squeeze(1)).sum()

该语句的意思是 预测的标签与实际标签相等的总数

获取训练集总的预判正确个数

train_acc += train_correct.data[0]      #用来计算正确率

准确率 : train_acc / (len(train_data))


2.误判率

评论 13
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值