二叉树的三种先序后序中序遍历的互相推出(例UVA 536 - Tree Recovery)

35 篇文章 0 订阅
30 篇文章 0 订阅


关于树的先序中序后序遍历

由先序中序推后序

因为 先序:根 左 右

        中序:左 根 右

        后序:右 根 左

根据他们的对应关系推出树

1,先序遍历 中序遍历推后序遍历:

#include <iostream>
#include<cstdio>
#include<algorithm>
#include<cstring>
using namespace std;

const int maxn=50;
void tree(int n,char *s1, char *s2,char *s)  //构建树
{
    if(n<=0)
        return;
    int p= strchr(s2,s1[0])-s2;  // 在中序遍历中寻找根的位置

    tree(p,s1+1,s2,s);      // 生成左子树,
    tree(n-p-1,s1+p+1,s2+p+1,s+p); // 生成右子树
    s[n-1]=s1[0];  // 将先序的前值赋给后序的末值
}
int main()
{
    char s[maxn],s1[maxn],s2[maxn];
    while(~(scanf("%s%s",&s1,&s2)))
    {
        int n=strlen(s1);
        tree(n,s1,s2,s);
        s[n]='\0';
        printf("%s\n",s);

    }

    return 0;
}
以上为 UVA 536 - Tree Recovery 点击打开链接 (二叉树)ac代码


但是。。。

由后序 中序去推前序崩掉了 。。。。可能是因为推的不行吧

从网上看了看思路思考一番,蒙出来了

2,先序遍历 中序遍历推后序遍历:

#include <iostream>
#include<cstdio>
#include<algorithm>
#include<cstring>
using namespace std;

const int maxn=50;
int l;
void tree(int n,char *s1, char *s2,char *s)
{
    if(n<=0)
        return;
        int p=0;
   for(;p<n;p++)
   {
       if(s2[p]==s1[n-1])
        break;
   }
    tree(p,s1,s2,s+1);
    tree(n-p-1,s1+p,s2+p+1,s+p+1);
    s[0]=s1[n-1];

}
int main()
{
    char s[maxn],s1[maxn],s2[maxn];
    while(~(scanf("%s%s",s2,s1)))
    {
       memset(s,0,sizeof(s));
        int l=strlen(s1);
        tree(l,s1,s2,s);
        s[l]='\0';
        printf("%s\n",s);

    }
    return 0;
}

关于借鉴的大神的代码

    /***************************************************************************/  
                    /*已知中序、后序遍历,求前序遍历*/  
    /***************************************************************************/  
      
    #include <iostream>  
    #include <fstream>  
    #include <string>  
      
    using namespace std;  
      
    struct TreeNode  
    {  
        struct TreeNode* left;  
        struct TreeNode* right;  
        char  elem;  
    };  
      
    TreeNode* BinaryTreeFromOrderings(char* inorder, char* aftorder, int length)  
    {  
        if(length == 0)  
        {  
            return NULL;  
        }  
        TreeNode* node = new TreeNode;//Noice that [new] should be written out.  
        node->elem = *(aftorder+length-1);  
        cout<<node->elem;  
        int rootIndex = 0;  
        for(;rootIndex < length; rootIndex++)//a variation of the loop  
        {  
            if(inorder[rootIndex] ==  *(aftorder+length-1))  
                break;  
        }  
        node->left = BinaryTreeFromOrderings(inorder, aftorder , rootIndex);  
        node->right = BinaryTreeFromOrderings(inorder + rootIndex + 1, aftorder + rootIndex , length - (rootIndex + 1));  
          
        return node;  
    }  
      
    int main(int argc, char** argv)  
    {  
        printf("Question: 已知中序、后序遍历,求前序遍历\n\n");  
       
        char* in="ADEFGHMZ";    //中序  
        char* af="AEFDHZMG";    //后序  
      
        cout<<"中序是:"<<in<<endl;  
        cout<<"后序是:"<<af<<endl<<endl;  
        cout<<"前序是:";  
      
        BinaryTreeFromOrderings(in, af, 8);   
        printf("\n\n");  
        return 0;  
    }  

/***************************************************************************/  
                /*已知前序、中序遍历,求后序遍历*/  
/***************************************************************************/  
  
#include <iostream>    
#include <fstream>    
#include <string>    
  
using namespace std;  
  
struct TreeNode  
{  
    struct TreeNode* left;  
    struct TreeNode* right;  
    char  elem;  
};  
  
void BinaryTreeFromOrderings(char* inorder, char* preorder, int length)  
{  
    if(length == 0)  
        {  
            //cout<<"invalid length";  
            return;  
        }  
    TreeNode* node = new TreeNode;//Noice that [new] should be written out.  
    node->elem = *preorder;  
    int rootIndex = 0;  
    for(;rootIndex < length; rootIndex++)  
    {  
        if(inorder[rootIndex] == *preorder)  
        break;  
    }  
    //Left  
    BinaryTreeFromOrderings(inorder, preorder +1, rootIndex);  
    //Right  
    BinaryTreeFromOrderings(inorder + rootIndex + 1, preorder + rootIndex + 1, length - (rootIndex + 1));  
    cout<<node->elem;  
    return;  
}  
   
int main(int argc, char* argv[])  
{  
    printf("Question: 已知前序、中序遍历,求后序遍历\n\n");  
  
    char* pr="GDAFEMHZ";//前序  
    char* in="ADEFGHMZ";//中序  
  
  
    cout<<"前序是:"<<pr<<endl;  
    cout<<"中序是:"<<in<<endl<<endl;  
    cout<<"后序是:";  
  
    BinaryTreeFromOrderings(in, pr, 8);  
    printf("\n\n");  
    return 0;  
来源 点击打开链接


还有非递归求法(点击打开链接


完美,以后再细看一次

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值